Have a personal or library account? Click to login
Multivariate Geostatistical Modeling of Phytophthora rubi and Pratylenchus penetrans in Red Raspberry Fields Cover

Multivariate Geostatistical Modeling of Phytophthora rubi and Pratylenchus penetrans in Red Raspberry Fields

Open Access
|Sep 2025

References

  1. Alby, T., Ferris, J. M., and Ferris, V. R. 1983. Dispersion and distribution of Pratylenchus scribneri and Hoplolaimus galeatus in soybean fields. Journal of Nematology 15:418–426.
  2. Anselin, L. 1988. Spatial econometrics: Methods and models. New York, NY: Springer.
  3. Anselin, L. 1992. Spatial data analysis with GIS: An introduction to application in the social sciences. Technical Report 92-10. Santa Barbara, CA: National Center for Geographic Information and Analysis.
  4. Anselin, L. 1995. Local indicators of spatial association – LISA. Geographical Analysis 27:93–115. doi: 10.1111/j.1538-4632.1995.tb00338.x
  5. Bilodeau, G. J., Martin, F. N., Coffey, M. D., and Blomquist, C. L. 2014. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order. Phytopathology 104:733–748. doi: 10.1094/PHYTO-09-13-0263-R
  6. Bivand, R. S., Altman, M., Anselin, L., Assunção, R., Bera, A., Berke, O., Guillaume Blanchet, F., Carvalho, M., Christensen, B., Chun, Y., Dormann, C., Dray, S., Dunnington, D., Gómez-Rubio, V., Koley, M., Kossowski, T., Krainski, E., Legendre, P., Lewin-Koh, N., Li, A., Millow, G., Mueller, W., Ono, H., Parry, J., Peres-Neto, P., Pietrzak, M., Piras, G., Reder, M., Sauer, J., Tiefelsdorf, M., Westerholt, R., Wilk, J., Wolf, L., and Yu, D. 2024a. Package ‘spdep’. https://cran.r-project.org/web/packages/spdep/spdep.pdf
  7. Bivand, R. S., Pebesma, E., and Gómez-Rubio, V. 2013. Applied spatial data analysis with R, 2nd Edn. New York, NY: Springer.
  8. Bivand, R. S., Piras, G., Anselin, L., Bernat, A., Blankmeyer, E., Chun, Y., Gómez-Rubio, V., Griffith, D., Gubri, M., Halbersma, R., LeSage, J., Li, A., Li, H., Ma, J., Malik, A., Millo, G., Pace, K., Parry, J., Peres-Neto, P., Rüttenauer, T., Sarrias, M., Sayago, J., and Tiefelsdorf, M. 2024b. Package ‘spatialreg’. https://cran.r-project.org/web/packages/spatialreg/spatialreg.pdf
  9. Blair, B. L., Stirling, G. R., and Whittle, P. J. L. 1999. Distribution of pest nematodes on sugarcane in south Queensland and relationship to soil texture, cultivar, crop age and region. Australian Journal of Experimental Agriculture 39:43–50. doi: 10.1071/ea98085
  10. Cliff, A. D., and Ord, J. K. 1981. Spatial processes: Models and applications. London, U.K: Pion Limited.
  11. Contina, J. B., Dandurand, L. M., and Knudsen, G. R. 2018. A spatial analysis of the potato cyst nematode Globodera pallida in Idaho. Phytopathology 108:988–1001. doi: 10.1094/PHYTO-11-17-0388-R
  12. Contina, J. B., Dandurand, L. M., and Knudsen, G. R. 2020. A spatiotemporal analysis and dispersal patterns of the potato cyst nematode Globodera pallida in Idaho. Phytopathology 110:379–392. doi: 10.1094/PHYTO-04-19-0113-R
  13. Cressie, N. 1988. Spatial prediction and ordinary kriging. Mathematical Geology 20:405–421. doi: 10.1007/BF00892986
  14. Cressie, N. 1990. The origins of kriging. Mathematical Geology 22:239–252. doi: 10.1007/BF00889887
  15. Cressie, N. 1993. Statistics for spatial data. New York, NY: John Wiley & Sons.
  16. Curd, E. E., Martiny, J. B. H., Li, H., and Smith, T. B. 2018. Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere 9:e02079. doi: 10.1002/ecs2.2079
  17. DeVetter, L. W., Watkinson, S., Zasada, I. A., Weiland, J. E., Hesse, C., and Walters, T. W. 2018. Effectiveness of non-tarped broadcast fumigation and root removal on root lesion nematode and Fusarium and Pythium species in a red raspberry system. Plant Health Progress 19:168–175. doi: 10.1094/PHP-01-18-0006-RS
  18. Duncan, J. M., and Cowan, J. B. 1980. Effect of temperature and soil moisture content on persistence of infectivity of Phytophthora fragariae in naturally infested field soil. Transactions of the British Mycological Society 75:133–139. doi: 10.1016/S0007-1536(80)80203-8
  19. Duncan, J. M., Kennedy, D. M., and Scott, P. H. 1991. Relationships between non-papillate, soilborne species of Phytophthora root rot of raspberry. Pp. 129–147 in J. A. Lucas, R. C. Shattock, D. S. Shaw, and L. R. Cooke, eds. Phytophthora. Cambridge, U.K: Cambridge University Press.
  20. Erwin, D. C., and Ribeiro, O. K. 1996. Phytophthora diseases worldwide. St. Paul, MN: APS Press.
  21. Fleischer, S. J., Blom, P. E., and Weisz, R. 1999. Sampling in precision IPM: When the objective is a map. Phytopathology 89:1112–1118. doi: 10.1094/PHYTO.1999.89.11.1112
  22. Gavassoni, W. L., Tylka, G. L., and Munkvold, G. P. 2001. Relationships between tillage and spatial patterns of Heterodera glycines. Phytopathology 91:534–545. doi: 10.1094/PHYTO.2001.91.6.534
  23. Gigot, J., Walters, T. W., and Zasada, I. A. 2013. Impact and occurrence of Phytophthora rubi and Pratylenchus penetrans in commercial red raspberry (Rubus idaeus) fields in Northwestern Washington. International Journal of Fruit Science 13:357–372. doi: 10.1080/15538362.2013.748373
  24. Gorny, A. M., Hay, F. S., Esker, P., and Pethybridge, S. J. 2020. Spatial and spatiotemporal analysis of Meloidogyne hapla and Pratylenchus penetrans in commercial potato fields in New York, USA. Nematolology 23:139–151. doi: 10.1163/15685411-bja10034
  25. Graham, K. A., Beck, B. R., Zasada, I. A., Scagel, C. F., and Weiland, J. E. 2021. Growth, sporulation, and pathogenicity of the raspberry pathogen Phytophthora rubi under different temperature and moisture regimes. Plant Disease 105:1791–1797. doi: 10.1094/PDIS-09-20-1916-RE
  26. Hiemstra, P., and Skoien, J. O. 2023. Package ‘automap’. https://cran.r-project.org/web/packages/automap/automap.pdf
  27. Holguin, C. M., Gerard, P., Mueller, J. D., Khalilian, A., and Agudelo, P. 2015. Spatial distribution of reniform nematode in cotton as influenced by soil texture and crop rotations. Phytopathology 105:674–683. doi: 10.1094/PHYTO-09-14-0240-R
  28. Jaime-Garcia, R., Orum, T. V., Felix-Gastelum, R., Trinidad-Correa, R., VanEtten, H. D., and Nelson, M. R. 2001. Spatial analysis of Phytophthora infestans genotypes and late blight severity on tomato and potato in the Del Fuerte Valley using geostatistics and geographic information systems. Phytopathology 91:1156–1165. doi: 10.1094/PHYTO.2001.91.12.1156
  29. James, G., Witten, D., Hastie, T., and Tibshirani, R. 2021. An introduction to statistical learning with applications in R, 2nd Edn. New York, NY: Springer.
  30. Knudsen, G. R., and Bin, L. 1990. Effects of temperature, soil moisture, and wheat bran on growth of Trichoderma harzianum from alginate pellets. Phytopathology 80:724–727. doi: 10.1094/Phyto-80-724
  31. Knudsen, G. R., and Dandurand, L. M. 2014. Ecological complexity and the success of fungal biological control agents. Advances in Agriculture 542703. doi.org/10.1155/2014/542703
  32. Kroese, D. R., Weiland, J. E., and Zasada, I. A. 2016. Distribution and longevity of Pratylenchus penetrans in the red raspberry production system. Journal of Nematology 48:241–247. doi: 10.21307/jofnem-2017-032
  33. Larkin, R. P., Gumpertz, M. L., and Ristaino, J. B. 1995. Geostatistical analysis of Phytophthora epidemic development in commercial bell pepper fields. Phytopathology 85:191–203. doi: 10.1094/Phyto-85-191
  34. LeSage, J. P., and Pace, R. K. 2009. Introduction to spatial econometrics, 1st Edn. Boca Raton, FL: CRC Press.
  35. Lopez-Nicora, H. D., Carr, J. K., Paul, P. A., Dorrance, A. E., Ralston, T. I., Williams, C. A., and Niblack, T. L. 2020. Evaluation of the combined effect of Heterodera glycines and Macrophomina phaseolina on soybean yield in naturally infested fields with spatial regression analysis and in greenhouse studies. Phytopathology 110:406–417. doi: 10.1094/PHYTO-03-19-0087-R
  36. Madden, L. V., Hughes, G., and van den Bosch, F. 2007. Spatial aspects of epidemics: Pathogen dispersal and disease gradients. Pp. 173–278 in L. V. Madden, G. Hughes, and F. van den Bosch, eds. The study of plant disease epidemics. St. Paul, MN: The American Phytopathology Society.
  37. Madden, L. V., Reynolds, K. M., Pirone, T. P., and Raccah, B. 1988. Modeling of tobacco virus epidemics as spatiotemporal autoregressive integrated moving-average processes. Phytopathology 78:1361–1366. doi: 10.1094/Phyto-78-1361
  38. Matheron, G. 1963. Principles of geostatistics. Economic Geology 58:1246–1266. doi: 10.2113/gsecongeo.58.8.1246
  39. McElroy, F. D. 1977. Effect of two nematode species on establishment, growth, and yield of raspberry. Plant Disease Reporter 61:277–279.
  40. Miller, S. A., Madden, L. V., and Schmitthenner, A. F. 1997. Distribution of Phytophthora spp. in field soils determined by immunoassay. Phytopathology 87:101–107. doi: 10.1094/PHYTO.1997.87.1.101
  41. Moran, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37:17–23. doi: 10.1093/biomet/37.1-2.17
  42. Morgan, G. D., MacGuidwin, A. E., Zhu, J., and Binning, L. K. 2002. Population dynamics and distribution of root lesion nematode (Pratylenchus penetrans) over a three-year potato crop rotation. Agronomy Journal 94:1146–1155. doi.org/10.2134/agronj2002.1146
  43. Neher, D. A. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology 48:371–394. doi: 10.1146/annurev-phyto-073009-114439
  44. Otten, W., and Gilligan, C. A. 2006. Soil structure and soil-borne diseases: Using epidemiological concepts to scale from fungal spread to plant epidemics. European Journal of Soil Science 57:26–37. doi: 10.1111/j.1365-2389.2006.00766.x
  45. Ott, R. L., and Longnecker, M. 2016. An introduction to statistical methods and data analysis. 7th Edn. Boston, MA: Cengage Learning.
  46. Pebesma, E., and Bivand, R. S. 2005. Classes and methods for spatial data: The ‘sp’ package. https://cran.r-project.org/web/packages/sp/vignettes/intro_sp.pdf
  47. Pebesma, E., and Graeler, B. 2023. Package ‘gstat’. https://cran.r-project.org/web/packages/gstat/gstat.pdf
  48. Plant, R. E. 2019. Spatial data analysis in ecology and agriculture using R, 2nd Edn. Boca Raton, FL: CRC Press.
  49. R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/
  50. Ristaino, J. B., and Gumpertz, M. L. 2000. New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annual Review of Phytopathology 38:541–576. doi: 10.1146/annurev.phyto.38.1.541
  51. Rossi, J. P., and Quénéhervé, P. 1998. Relating species density to environmental variables in presence of spatial autocorrelation: A study case on soil nematodes distribution. Ecography 21:117–123. doi: 10.1111/j.1600-0587.1998.tb00665.x
  52. Rudolph, R. E., and DeVetter, L. W. 2015. Management strategies for Phytophthora rubi and Pratylenchus penetrans in floricane red raspberry (Rubus idaeus L.). Journal of the American Pomological Society 69:118–136.
  53. Sapkota, S., Burlakoti, R. R., and Punja, Z. K. 2023. Diversity in the virulence and metalaxyl-m sensitivity of Phytophthora rubi isolates has implications for raspberry root rot and wilting complex management. Canadian Journal of Plant Pathology 45:263–276. doi: 10.1080/07060661.2023.2175912
  54. Schabenberger, O., and Gotway, C. A. 2005. Statistical methods for spatial data analysis. 1st Edn. New York, NY: Chapman and Hall/CRC.
  55. Stewart, J. P., Kroese, D., Tabima, J., Fieland, V., Zasada, I. A., and Grünwald, N. J. 2014. Isolation and detection of Phytophthora rubi in raspberry (Rubus idaeus) production in the western United States. Plant Disease 98:1702–1708. doi: 10.1094/PDIS-11-13-1130-RE
  56. Townsend, J. L., and Webber, L. R. 1971. Movement of Pratylenchus penetrans and the moisture characteristics of three Ontario soils. Nematologica 17:47–57. doi: 10.1163/187529271X00404
  57. Trudgill, D. L., and Brown, D. J. F. 1978. Pratylenchus penetrans: A potential pest of raspberries in Scotland. Plant Pathology 27:101. doi: 10.1111/j.1365-3059.1978.tb01089.x
  58. Turechek, W. W., and Madden, L. V. 1999. Spatial pattern analysis and sequential sampling for the incidence of leaf spot on strawberry in Ohio. Plant Disease 83:992–1000. doi: 10.1094/PDIS.1999.83.11.992
  59. United States Environmental Protection Agency. 2012. Soil fumigant mitigation factsheet: Phase 2 site-specific fumigant management plans and post-application summaries. https://19january2017snapshot.epa.gov/sites/production/files/2013-10/documents/sfm-phase2-sitespec-mgmnt-plans-2012.pdf.
  60. USDA Soil Survey. 2024. Soil survey geographic (SSURGO) database. https://sdmdataaccess.sc.egov.usda.gov.
  61. USDA-NASS. 2022. Non-citrus fruits and nuts 2021 summary. https://www.nass.usda.gov/Publications/Todays_Reports/reports/ncit0522.pdf.
  62. Vrain, T. C., and Pepin, H. S. 1989. Effect of Pratylenchus penetrans on root rot of red raspberry caused by Phytophthora erythroseptica. Acta Horticulture 262:231–240. doi: 10.17660/ActaHortic.1989.262.34
  63. Wackernagel, H. 2003. Multivariate geostatistics. New York, NY: Springer.
  64. Walters, T. W., Bolda, M., and Zasada, I. A. 2017. Alternatives to current fumigation practices in western states raspberry. Plant Health Progress 18:104–111. doi: 10.1094/PHP-RS-16-0068
  65. Weiland, J. E., Benedict, C., Zasada, I. A., Scagel, C. F., Beck, B. R., Davis, A., Graham, K., Peetz, A., Martin, R. R., Dung, J. K. S., Reyes Gaige, A., and Thiessen, L. 2018. Late-summer symptoms in western Washington red raspberry fields associated with co-occurrence of Phytophthora rubi, Verticillium dahliae, and Pratylenchus penetrans, but not Raspberry bushy dwarf virus. Plant Disease 102:938–947. doi: 10.1094/PDIS-08-17-1293-RE
  66. Weiland, J. E., Scagel, C. F., Bendict, C., DeVetter, L. W., and Beck, B. R. 2024. Fungicide sensitivity of Phytophthora isolates from the Washington red raspberry industry. Plant Disease 108:2104–2110. doi: 10.1094/PDIS-12-23-2641-RE
  67. Whittle, P. 1954. On stationary processes in the plane. Biometrika 41:434–449. doi: 10.1093/biomet/41.3-4.434
  68. Widmark, A. K., Anderson, B., Cassel-Lundhagen, A., Sandstrom, M., and Yeun, J. E. 2007. Phytophthora infestans in a single field in southwest Sweden early in spring: Symptoms, spatial distribution and genetic variation. Plant Pathology 56:573–579. doi: 10.1111/j.1365-3059.2007.01618.x
  69. Wilcox, W. F., Scott, P. H., Hamm, P. B., Kennedy, M., Duncan, J. M., Brasier, C. M., and Hansen, M. 1993. Identity of a Phytophthora species attacking raspberry in Europe and North America. Mycological Research 97:817–831. doi: 10.1016/S0953-7562(09)81157-X
  70. Yang, P., and van Elsas, J. D. 2018. Mechanisms and ecological implications of the movement of bacteria in soil. Applied Soil Ecology 129:112–120. doi: 10.1016/j.apsoil.2018.04.014
  71. Yan, H., and Nelson, B. J. 2022. Effects of soil type, temperature, and moisture on development of Fusarium root rot of soybean by Fusarium solani (FSSC 11) and Fusarium tricinctum. Plant Disease 106:2974–2983. doi: 10.1094/PDIS-12-21-2738-RE
  72. Zasada, I. A., Weiland, J. E., Han, Z., Walters, T. W., and Moore, P. 2015. Impact of Pratylenchus penetrans on the establishment of red raspberry. Plant Disease 99:939–946. doi: 10.1094/PDIS-09-14-0980-RE
DOI: https://doi.org/10.2478/jofnem-2025-0038 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Submitted on: Jan 2, 2025
Published on: Sep 24, 2025
Published by: Society of Nematologists, Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 J. B. Contina, D. R. Kroese, T. W. Walters, J. E. Weiland, I. A. Zasada, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.