Have a personal or library account? Click to login
Morphological Characterization and Assessment of Genetic Variability of Tylenchulus semipenetrans Populations from Southern Iran Cover

Morphological Characterization and Assessment of Genetic Variability of Tylenchulus semipenetrans Populations from Southern Iran

Open Access
|Dec 2024

Figures & Tables

Figure 1:

Geographical location of the sampled areas. The majority of the samples were collected in the citrus-growing regions (known as the citrus belt) of Fars province, southern Iran (shown in green: Kazerun, Shiraz, Ghir, Jahorm, Fasa and Darab). Two samples were also collected from Mazandaran province in northern Iran (shown with red border).
Geographical location of the sampled areas. The majority of the samples were collected in the citrus-growing regions (known as the citrus belt) of Fars province, southern Iran (shown in green: Kazerun, Shiraz, Ghir, Jahorm, Fasa and Darab). Two samples were also collected from Mazandaran province in northern Iran (shown with red border).

Figure 2:

Principal Component Analysis (PCA) performed on populations of Tylenchulus semipenetrans collected from citrus orchards in Fars province, focusing on the morphometric characteristics of the second-stage juveniles (A) and males (B).
Principal Component Analysis (PCA) performed on populations of Tylenchulus semipenetrans collected from citrus orchards in Fars province, focusing on the morphometric characteristics of the second-stage juveniles (A) and males (B).

Figure 3:

Bayesian phylogenetic tree of Tylenchulus semipenetrans isolates from citrus orchards in Fars province based on the ITS of rDNA sequences, analyzed under the General Time Reversible with a gamma distribution (GTR + G) model. Numbers at nodes are posterior probability values. Sequences with codes in the parentheses generated in this study. The codes in parentheses indicate the haplotype of the relevant population.
Bayesian phylogenetic tree of Tylenchulus semipenetrans isolates from citrus orchards in Fars province based on the ITS of rDNA sequences, analyzed under the General Time Reversible with a gamma distribution (GTR + G) model. Numbers at nodes are posterior probability values. Sequences with codes in the parentheses generated in this study. The codes in parentheses indicate the haplotype of the relevant population.

Figure 4:

Bayesian phylogenetic tree of Tylenchulus semipenetrans isolates from citrus orchards in Fars province based on D2-D3 28S rDNA partial sequences, analyzed by the General Time Reversible (GTR) model. The numbers shown at the nodes are posterior probability values. Sequences with codes in the parentheses generated in this study. The codes in parentheses indicate the haplotype of the relevant population.
Bayesian phylogenetic tree of Tylenchulus semipenetrans isolates from citrus orchards in Fars province based on D2-D3 28S rDNA partial sequences, analyzed by the General Time Reversible (GTR) model. The numbers shown at the nodes are posterior probability values. Sequences with codes in the parentheses generated in this study. The codes in parentheses indicate the haplotype of the relevant population.

Figure 5:

Bayesian phylogenetic tree of Tylenchulus semipenetrans isolates from citrus orchards of the Fars Province based on COI mtDNA partial sequences, analyzed under the General Time Reversible (GTR) Model. Numbers shown on nodes are posterior probability values. All T. semipenetrans sequences were produced in this study. The codes in parentheses indicate the haplotype of the relevant population.
Bayesian phylogenetic tree of Tylenchulus semipenetrans isolates from citrus orchards of the Fars Province based on COI mtDNA partial sequences, analyzed under the General Time Reversible (GTR) Model. Numbers shown on nodes are posterior probability values. All T. semipenetrans sequences were produced in this study. The codes in parentheses indicate the haplotype of the relevant population.

Figure 6:

A: principal component analysis (PCA) generalized linear modeling of Tylenchulus semipenetrans haplotypes from citrus orchards of the Fars province based on COI mtDNA, and B: the corresponding phylogenetic tree, analyzed under the Hasegawa Kishino Yano (HKY) model in MEGA 7. Numbers shown on nodes are posterior probability values.
A: principal component analysis (PCA) generalized linear modeling of Tylenchulus semipenetrans haplotypes from citrus orchards of the Fars province based on COI mtDNA, and B: the corresponding phylogenetic tree, analyzed under the Hasegawa Kishino Yano (HKY) model in MEGA 7. Numbers shown on nodes are posterior probability values.

Figure 7:

Agarose gel electrophoresis verification of amplified products of ITS rDNA reactions using forward Ts2-IF and reverse Ts2-IR. The lane labeled as follows: Negative control (N), T. semipenetrans (1–3), Tylenchorhynchus sp. (4 & 5), Mesocriconema sp. (6 & 7), Hemicycliophora sp. (8 & 9), and DNA ladder (L).
Agarose gel electrophoresis verification of amplified products of ITS rDNA reactions using forward Ts2-IF and reverse Ts2-IR. The lane labeled as follows: Negative control (N), T. semipenetrans (1–3), Tylenchorhynchus sp. (4 & 5), Mesocriconema sp. (6 & 7), Hemicycliophora sp. (8 & 9), and DNA ladder (L).

Supplementary Figure 1:

Ethidium bromide-stained gels containing reaction products of ITS rDNA region of T. semipenetrans following PCR amplification with A) the primers forward 18S and reverse 21S and B) the newly designed primer set: forward Ts2-IF and reverse Ts2-IR. The amplification product of the 18S and 21S primer sets was more than 1000 bp, and these primers inefficiently amplified the target region from most of the isolates, whereas the new primer set properly amplified a smaller region of the ITS gene from all isolates of the citrus nematode.
Ethidium bromide-stained gels containing reaction products of ITS rDNA region of T. semipenetrans following PCR amplification with A) the primers forward 18S and reverse 21S and B) the newly designed primer set: forward Ts2-IF and reverse Ts2-IR. The amplification product of the 18S and 21S primer sets was more than 1000 bp, and these primers inefficiently amplified the target region from most of the isolates, whereas the new primer set properly amplified a smaller region of the ITS gene from all isolates of the citrus nematode.

Supplementary Figure 2:

Alignment results of ITS rDNA gene sequences, at the area of designed primers of common plant-parasitic nematode taxa in citrus orchards, using Mega 7. A) Forward primer search B) Reverse primer search.
Alignment results of ITS rDNA gene sequences, at the area of designed primers of common plant-parasitic nematode taxa in citrus orchards, using Mega 7. A) Forward primer search B) Reverse primer search.

Supplementary Figure 3:

Haplotype genealogy graph for COI (A) and ITS (B) sequences based on TCS network analysis. Each circle represents a haplotype.
Haplotype genealogy graph for COI (A) and ITS (B) sequences based on TCS network analysis. Each circle represents a haplotype.

Summary information of single nucleotide variations (SNV) and/or single nucleotide polymorphism (SNPs) analysis in this study for identification and genetic diversity of Tylenchulus semipenetrans populations from Fars province, Iran_

LocusNo. of sitesSegregating sites or SNVsSNPsNo. of haplotypesNucleotide diversityTajima’s DSequence conservationMin recombination
COI603161110Pi: 0.00767D: 0.89661C: 0.9731
D2D3676241233Pi: 0.00535D: −1.02740C: 0.9646
ITS597171116Pi: 0.00515D: −0.89706C: 0.9722

The primers used in this study for identification and genetic diversity of Tylenchulus semipenetrans populations_

Primer codePrimer sequence (5′-3′)Product size (bp)Target regionReferences
18STTGATTAGGTCCCTGCCCTTT967ITS1-5.8S-ITS2Marek et al., 2010
21STTTCACTCGCCGTTACTAAGG
TW81FGTTTCCGTAGGTGAACCTGC809–841ITS1-5.8S-ITS2Tanha Maafi et al., 2003
AB28RATATGCTTAAGTTCAGCGGGT
Ts2-IFTTCGAGAAACTTGGGGATTGGC770ITS1-5.8S-ITS2Present study
Ts2-IRCAGGGACCTATGATCAAGTGCTT. semipenetrans specific
D2AFACAAGTACCGTGAGGGAAAGTTG774–77728S D2-D3Subbotin et al., 2006
D3BRTCGGAAGGAACCAGCTACTA
COI-F5AATWTWGGTGTTGGAACTTCTTGAAC790Cytochrome oxidase subunit IPowers et al., 2014
COI-R9CTTAAAACATAATGRAAATGWGCWACW
ACATAATAAGTATC-

Morphometrics of the second-stage juveniles of 31 populations (five specimens each) of Tylenchulus semipenetrans, collected from citrus orchards of Fars Province, Iran_ Data are expressed as mean ± standard deviation (range) of population means or specimens_ Measurements are in μm_

Character/Population codeMeans of populationsSpecimens
n31154
L331 ± 12.1 (304–349)332 ± 18 (276–376)
a27.6 ± 1.1 (24.3–29.7)28 ± 2 (22.4–34.7)
b3.5 ± 0.1 (3.2–3.7)3.5 ± .2 (3.1–4.1)
Stylet11.4 ± 0.3 (11–11.8)11.4 ± .4 (10.4–12.4)
Conus6.1 ± 0.2 (5.5–6.7)6.1 ± .4 (4.8–7.3)
Anterior end to the center of the median bulb46.7 ± 1.6 (43.4–49.5)46.8 ± 2.4 (39.9–53)
Pharynx length94 ± 3.7 (85–103)95 ± 5 (76–106.5)
MB49.3 ± 1.2 (45.5–51)49 ± 2 (41–55)
Anterior end to hemizonid66.1 ± 2.2 (61.3–70.4)66 ± 3.4 (58–77)
Anterior end to secretory-excretory pore (S. E. pore)183 ± 7.5 (168–196)183 ± 12 (147–222)
Anterior end to nerve ring61.1 ± 2.3 (57.1–66.6)61 ± 3 (51–71)
S. E. pore to genital primordium (GP)19.4 ± 2.8 (12.8–24.9)20 ± 4.2 (12–32)
Anterior end to GP200 ± 6.7 (184–212)200 ± 10 (165–222)
GP length12.6 ± 1.6 (9.8–17.4)13 ± 2 (8.5–21)
GP to the posterior end118 ± 7.4 (101–130)119 ± 11.7 (90–155)
Excretory pore from the anterior end (% of L)56.2 ± 2.1 (53.2–60.4)56 ± 3 (47–64)
Anterior end to GB (% of L)60.6 ± 1.3 (58.4–63.2)60 ± 2 (54–67)
Median bulb width6.2 ± 0.3 (5.4–6.6)6 ± .5 (4.9–7.5)
Median bulb length13.2 ± 0.9 (11.9–16)13 ± 1.4 (10–18)
Median bulb length/diam. ratio211 ± 16.5 (182–262)212 ± 26 (104–282)
body width (BW) in Pharynx11.2 ± 0.4 (10.3–11.9)11 ± .6 (9.6–13)
Max. BW12.0 ± 0.4 (10.7–12.6)12 ± .6 (10–14)
M0.5 ± 0.02 (0.5–0.6).5 ± 0 (.4–.7)
Stylet / L (%)3.5 ± 0.1 (3.2–3.9)3.4 ± .2 (3–4)
S. E. pore / L (%)55.4 ± 2.1 (51.8–60)55 ± 3 (47–64)

The sampling sites of Tylenchulus semipenetrans the corresponding GenBank accession numbers for ITS, D2-D3 expansion segments of 28S and COI mtDNA sequences obtained in this study_

Soil sample codesGPS locationLocalityHost (Citrus spp.)rDNA genesMt DNA COI


latitudelongitudeD2–D3ITS
2528.669453.60647Qotb Abad, JahromC. limettaOP723626OP722727OP739535
3228.5213553.67221JahromC. sinensisOP723604OP722708OP739514
4229.5748751.73012Ahmad Abad, KazerunC. sinensisOP723627OP722728OP739536
11228.9554653.60143Phase-e5, FasaC. sinensisOP723629OP722729OP739537
41129.6229951.58779Hasan Abad, KazerunC. sinensisOP723616OP722718OP739524
67828.9990953.12713Aliabad, KhafrC. aurantiumOP723630OP722730-
68228.9888153.15637Balashahr, KhafrC. sinensis---
69828.5196753.60683Heydarabad, JahromC. limettaOP723597-OP739507
70728.5354753.65353Najib Abad, JahromC. aurantiumOP723610OP722704OP739510
71028.539153.53022Maghsudabad, JahromC. limettaOP723606OP722696OP739515
71228.539753.53049Maghsudabad, JahromC. aurantiumOP723631OP722731OP739538
71628.4755153.49098Mill, JahromC. aurantiumOP723607OP722710OP739516
71728.6686353.60608Qotb Abad, JahromC. limettaOP723591OP722698OP739501
72028.6687853.6059Yousofabad, JahromC. limettaOP723592OP722699OP739502
73328.9313853.60712Kazemabad, FasaC. sinensisOP723601OP722705OP739511
73528.9731153.63675Banyan, FasaC. sinensisOP723613OP722715OP739521
73728.9576853.5981Phase-e5, FasaC. sinensisOP723614OP722716OP739522
74329.0365753.64304Akbarabad, FasaC. bigaradiaOP723615OP722717OP739523
74628.66885554.665161Bagh-e Morakabat, DarabC. sinensisOP723628OP722722OP739529
74928.7220154.57227Naghsh Shapour, DarabC. sinensisOP723632OP722732OP739539
75528.6792754.65618Jannat Shahr, DarabC. bigaradiaOP723639OP722738OP739546
75928.6410554.64284Deh Kheyr Payin, DarabC. sinensisOP723633OP722733OP739540
76328.7533154.44562Sharak-e Sarollah, DarabC. sinensisOP723618OP722719OP739526
76528.9574953.60026Hasan Abad, DarabC. limettaOP723634-OP739541
77128.78668954.339938Fasarood, DarabC. aurantiumOP723593OP722700OP739503
77228.68765454.647131Zein Abad Sangi, DarabC. sinensisOP723608OP722712OP739517
77328.7699454.22515Eij, DarabC. sinensisOP723602OP722706OP739512
77728.44539653.042906Gandoman, KarzinC. reticulataOP723594OP722701OP739504
78028.44230153.143399Emam Shahr, GhirC. limettaOP723596OP722702OP739506
78528.3435253.25282Tang-e Ruein, GhirC. aurantiumOP723636OP722735OP739543
78928.45252953.127036Deh Beh, GhirC. aurantiumOP723609OP722711OP739518
79328.28539553.074062Mand, KarzinC. bigaradiaOP723619OP722720OP739527
79528.32826953.038029Eslam Abad, KarzinC. aurantiumOP723620OP722721OP739528
80129.5671751.75703Ahmadabad, KazerunC. aurantiumOP723611OP722713OP739519
80229.5692451.75969Ahmadabad, KazerunC. aurantiumOP723637OP722736OP739544
81229.7943551.57338Ganjeii, KazerunC. sinensisOP723640OP722739OP739547
81829.759451.55155Sheykhi, KazerunC. sinensisOP723642OP722741OP739549
82129.7297351.53522Anarestan, KazerunC. sinensisOP723612OP722714OP739520
88229.5610951.77738Zavali, KazerunC. aurantiumOP723638OP722737OP739545
90829.0035853.11102Karadeh, KhafrC. aurantiumOP723603OP722707OP739513
92128.9243453.33666Khavaran, KhafrC. sinensisOP723641OP722740OP739548
740-228.8901453.68479Dastjeh, FasaC. sinensisOP723617-OP739525
Ami28.9626054.04458DarabC. aurantiumOP723621OP722723OP739530
ARE29.6191052.57446Sardaran, ShirazC. limettaOP723635OP722734OP739542
Beh28.4711053.03187KarzinC. aurantiumOP723622OP722724OP739531
Behz-Greenhouse29.6354452.52485Eram Garden, ShirazC. aurantiumOP723623OP722725OP739532
Sh136.61379153.258824Behshahr1, MazandaranC. sinensisOP723624-OP739533
Sh236.62547652.931576Behshahr2, MazandaranC. sinensisOP723625OP722726OP739534

Single nucleotide polymorphism in the alignment of the citrus nematode (Tylenchulus semipenetrans) ITS of rDNA gene partial sequences_

ITS haplotypesIsolate(s)Position of the single nucleotide variations/polymorphisms (SNVs/SNPs) on the sequences
3237467192122139151159161162188225354405423523
T. semipenetrans JN112270.1CD1_cl2AGGTCAGCACTTCTCCC

TsA (n = 20)37, 42, 112, 678, 706, 716, 717, 733, 743, 755, 763, 777, 778, 789, 795, 821,882, 921 BEHZ & SH2AGGTCAGCACTTCTCCC
TsB (n = 6)707, 710, 754, 801, 818 & ARECAGACAGCACTTCTCCC
TsC (n = 1)812CAGTCAGCACCTCTCCC
TsD (n = 3)720, 773 & 802CAAACACCACTTCTCCC
TsE (n = 1)785CAGACAACACTCTTCCC
TsF (n = 1)759CAGATAACACTCCTCCC
TsG (n = 6)712, 735, 737, 749, 771, & 908AGGTCAGCACCTCTCCC
TsH (n = 1)25CAGATAACATTCCTCCC
TsI (n = 1)BEHAGGTCAGCACTTTTCCC
TsJ (n = 1)AMIAGGTCAGCACTCCTCCC
TsK (n = 1)746CAGATAACACTCCATCT
TsL (n = 1)793CAGACAGCGCTTCTCCC
TsM (n = 1)411CAGTTAACACTCCTCCC
TsN (n = 1)772CAGTCAGTTCTTCTCTT
TsO (n = 1)32CAGATGACACTCCTCCC
TsP (n = 1)780CGGTCAGCACCTCTCCC

Single nucleotide polymorphism in the alignment of the citrus nematode (Tylenchulus semipenetrans) D2-D3 of 28 S rDNA gene_

D2D3 haplotypesIsolate(s)Position of the single nucleotide variations/polymorphisms (SNVs/SNPs) on the sequences
345559738494104113119125157167223238260263340355369456497502616661
T. semipenetrans KM598334.1ES-Jirof2GCTCCTAGGACGTTCCGCGACTGA

Ts1 (n = 6)720, 773, 32, 759, 765 & 818GCTCCTAGGACGTTCCGCGACTGA
Ts2 (n = 2)BEH & 921GCTCTTAGGACCTTCCTCGATTGA
Ts3 (n = 2)AMI & 812GCTCTTAGGACCTTCCTCGACTGA
Ts4 (n = 1)755GCTCCTAGGACGGCCCGCGGCTGA
Ts5 (n = 1)882GCTCCTAGGACGTCCCGCGGCTAA
Ts6 (n = 1)802GCTCTTAGGACGTTCCTCTACTGA
Ts7 (n = 1)785GCTCCTAAGACGTTCCGCGACTGA
Ts8 (n = 1)AREGCTCTTAGGACCTTCCTTGATTGA
Ts9 (n = 2)740 & 749GCTCCTAGGGCGTTCCGCGACTGA
Ts10 (n = 1)712GCTCCTAGGGTGTTCCGCGACTGA
Ts11 (n = 1)678GCTCTTAGGACGTCCCGCGACTGA
Ts12 (n = 2)112 & 777GCTCTTAGGACCTTCTTCGATTGA
Ts13 (n = 1)746GCTCCTTGGGTGTTCCGCGACTGA
Ts14 (n = 1)42GCTCTTAGGACGTTCCTCGACTGA
Ts15 (n = 1)25GCTCCTAGTGCGTTCCGCGACTGA
Ts16 (n = 9)717, 698, 706, 716, 789, 821, 743, 763 & SH2GCTCCTAGGACGTCCCGCGGCTGA
Ts17 (n = 2)733 & SH1GCTCCTAGGACGTCC GCGACTGA
Ts18 (n = 1)BEHZGCTCCTAGGACCTTCCTCGACTGA
Ts19 (n = 1)795GCTCTTAGGACGTCCCTCGACTGA
Ts20 (n = 2)754 & 793GCTCCTAGGGTGTTTCGCGACTGA
Ts21 (n = 1)411GCTCCTAGGACGTTCCGCGACCGA
Ts22 (n = 1)737GCTCTTAGGACGTTCCGCGACTGA
Ts23 (n = 1)735GCTCTTAGGGTGTTCCTCGACTGA
Ts24 (n = 1)801GCTCTTAGGACCTTCCTCTATTGA
Ts25 (n = 1)707GCTCTTAGGACGTCCCGCTACTGA
Ts26 (n = 1)772TCCGTTAGGACGTTCCTCGACTGA
Ts27 (n = 1)710GCTCTTAGGACCTTCCGCGACTGA
Ts28 (n = 1)37GTCCCTAGGACGTTCCGCGACTGA
Ts29 (n = 1)908GCTCCCAGGGCGTTCCGCGACTGA
Ts30 (n = 1)788GCTCTTAGGACGTCCCGCGGCTGA
Ts31 (n = 1)780GCTCCTAGGGTGTTCCGCTACTGA
Ts32 (n = 1)778GCTCTTAGGACCTCCCGCGACTGA
Ts33 (n = 1)771GCTCCTAGGGTGTTCCGCGACTGC

Single nucleotide polymorphism (SNPs) in the alignment of the citrus nematode (Tylenchulus semipenetrans) COI mtDNA partial gene_

COI haplotypesIsolate(s)Position of the single nucleotide variations/polymorphisms (SNVs/SNPs) on the sequences
49250353385393406425448469481515532535562574580
TsI (n = 21)771, 908, 32, 710, 801, 735, 737, 793, 795, 746, AMI, BEHZ, 25, 42, 112, 749, 759, ARE, 802, 25 & 812CGATAATATAAGACAT
TsII (n = 10)698, 754, 707, 733, 716, 763, BEH, 712, 765 & 921TAACAATAAAAAACAT
TsIII (n = 11)720, 772, 773, 821, 743, 411, SH1, SH2, 785, 755 & 818TAATAATTAGAAGTGT
TsIV (n = 1)740-2TAACAATTAGAAGTGT
TsV (n = 1)789TAACAATAAAAAATGT
TsVI (n = 1)706CGATAATATAGGACAT
TsVII (n = 1)780CGATCGTATAAGACAT
TsVIII (n = 1)778CGCTAATATAGGACAT
TsIX (n = 1)777CGATAATATAAGACAG
TsX (n = 1)717CGATAAGATAAGACAT

Morphometrics of males of 30 populations (five specimens each) of Tylenchulus semipenetrans, collected from citrus orchards of Fars Province, Iran_ Data are given as mean ± standard deviation (range) of population means or specimens_ Measurements are in μm_

CharactersMeans of populationsSpecimens
n30143
L346 ± 13.2 (318.3–375)347 ± 21 (296–424)
a34.9 ± 1.9 (31.7–39.7)34.9 ± 2.8 (29.6–44.9)
b3.4 ± 0.2 (3.1–3.8)3.5 ± 0.2 (2.8–4.3)
c9.7 ± 0.5 (8.5–10.8)9.7 ± 0.7 (8.0–12.1)
c’4.7 ± 0.3 (4.1–5.5)4.7 ± 0.5 (3.5–6.1)
Stylet8.4 ± 0.4 (7.7–9.2)8.4 ± 0.6 (7–11.1)a
Conus4.9 ± 0.3 (4.3–5.7)4.9 ± 0.5 (3.5–6.4)
Anterior end to the center of the median bulb43.7 ± 3.2 (34.2–50)43.7 ± 4.6 (31–64)
Pharynx length100 ± 4.8 (90–111)101 ± 7.6 (83–123)
Anterior end to hemizonid65.6 ± 2.8 (58.6–70.6)65.6 ± 4.1 (52–77)
Anterior end to nerve ring61.1 ± 3.0 (53.0–66.7)61.1 ± 4.2 (48.5–72.5)
Secretory-excretory pore (S. E. pore) to cloaca100 ± 6.1 (87–110)101 ± 8.9 (75–119.5)
Anterior end to S. E. pore231 ± 20.7 (198–279)229 ± 44 (161–333)
S. E. pore from the anterior end (% of L)66.9 ± 5.3 (58.0–78.)66 ± 12 (54–91.2)
Median bulb width4.5 ± 0.6 (3.2–5.6)4.5 ± 0.7 (2.7–6.2)
Median bulb length11.2 ± 0.9 (9.3–13.0)11.2 ± 1.4 (7.1–14)
Median bulb length/diam. Ratio252 ± 30.3 (199–328)251 ± 41 (176–385)
Max. body width (BW)10.0 ± 0.5 (9.1–11.0)10.0 ± 0.8 (8.3–13)
BW in Pharynx8.8 ± 0.4 (8.0–9.6)8.8 ± 0.6 (7.3–10.7)
Anal BW7.7 ± 0.5 (7.3–10.2)7.7 ± 0.9 (6.7–16.4)
Spicules (curved median line)16.6 ± 0.7 (15.5–17.8)16.6 ± 1.1 (14–20)
Gubernaculum3.7 ± 0.3 (3.1–4.3)3.7 ± 0.5 (2.5–5.0)
Tail36.0 ± 2.4 (33.1–42.0)36 ± 3.4 (29–47.5)
M0.6 ± 0.0 (0.5–0.6)60 ± 6 (41–77)
Stylet / L (%)2.4 ± 0.1 (2.2–2.6)2.4 ± 0.2 (2.1–3.2)
S. E. pore / L (%)66.9 ± 5.3 (58.0–78.7)66 ± 12 (53.9–91.2)
DOI: https://doi.org/10.2478/jofnem-2024-0047 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Submitted on: Jul 29, 2024
Published on: Dec 15, 2024
Published by: Society of Nematologists, Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Mohammad Rumiani, Miloslav Zouhar, Akbar Karegar, Habiballah Hamzehzarghani, Ahmad Tahmasebi, Milad Rashidifard, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.