Have a personal or library account? Click to login

First report of barley root-knot nematode, Meloidogyne naasi from turfgrass in Idaho, with multigene molecular characterization

Open Access
|Nov 2023

Figures & Tables

Figure 1:

Damage on golf course turfgrass in Banbury, Idaho. A. Golf course green in decline, showing patchy surface. B. Close-up of damage to mixed turfgrass, associated with M. naasi. Photo credits: Darryl Glinski.
Damage on golf course turfgrass in Banbury, Idaho. A. Golf course green in decline, showing patchy surface. B. Close-up of damage to mixed turfgrass, associated with M. naasi. Photo credits: Darryl Glinski.

Figure 2:

Photomicrographs of Meloidogyne naasi second-stage juveniles. A,B, heads; C, lateral lines; D,E, tails; the scale bar =10 μm.
Photomicrographs of Meloidogyne naasi second-stage juveniles. A,B, heads; C, lateral lines; D,E, tails; the scale bar =10 μm.

Figure 3:

Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 735-bp alignment of 28S rDNA sequences, with M. artiellia as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in blue bold font.
Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 735-bp alignment of 28S rDNA sequences, with M. artiellia as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in blue bold font.

Figure 4:

Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 1764-bp alignment of IGS-2 rDNA sequences, with M. hapla as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in blue bold font.
Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 1764-bp alignment of IGS-2 rDNA sequences, with M. hapla as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in blue bold font.

Figure 5:

Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 1764-bp alignment of mitochondrial sequences including the interval from COII to 16S, with M. hapla as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in bold font; other M. naasi is in blue and M. minor in red font.
Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 1764-bp alignment of mitochondrial sequences including the interval from COII to 16S, with M. hapla as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in bold font; other M. naasi is in blue and M. minor in red font.

Figure 6:

Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 763-bp alignment of mitochondrial COI sequences, with M. artiellia as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in blue bold font. The COI sequence from Powers et al. (2018) is marked by an asterisk.
Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 763-bp alignment of mitochondrial COI sequences, with M. artiellia as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in blue bold font. The COI sequence from Powers et al. (2018) is marked by an asterisk.

Figure 7:

Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 1003-bp alignment of Hsp90 genomic sequences, with M. hapla as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in blue bold font.
Phylogenetic relationships of Idaho population of Meloidogyne naasi and other selected root-knot nematodes, as inferred from a 1003-bp alignment of Hsp90 genomic sequences, with M. hapla as the outgroup. A 50% majority rule consensus tree obtained from Bayesian analysis was generated using the GTR + I + G model of nucleotide substitution. Branch support (PP) values above 0.5 are shown on appropriate branches. New sequences are highlighted in blue bold font.

Root knot nematode isolates and GenBank numbers included in this study_

SpeciesOriginSample ID28SIGS-2mtCOICOII-16SHsp90
M. arenariaFlorida, USA- EU364880
Maryland, USA- FJ238508
Sri Lanka- MT741790
M. artiellia-- KY433447
-- KU517173
Italy-AY150369
M. chitwoodi-NEMBAR210 KU517168
Elko Co., Nevada, USAN7145 MH128483
N7147 MH128484
N7148 MH128485
N7149 MH128486
San Juan Co., NMP221087 MH128518
San Luis Obispo Co, CA186JN019321
USA JQ041535
Washington, USAP21040 MH128515
P215031 MH128516
P215032 MH128517
13B KC262220 (cl 1219)
KC262221 (cl 1220)
KC262222 (cl 1221)
KC262223 (cl 1222)
KC262224 (cl 1223)
M. christeiFlorida, USA-KR082317
M. dunensisSpain EF612712
M. enterolobiiChina HQ896361
Florida, USA03A1 MH636612 (cl. 842)
M. exiguaBrazil-AF435795
Nicaragua- HQ709105
N213 MH128476
N214 MH128477
N215 MH128478
M. fallaxNetherlands*LW JN241952 (cl 2584)KC262225 (cl 2735)
KC262226 (cl 2736)
KC262227 (cl 2734)
KC262228 (cl 2737)
CA, USA853 KC262229
KC262233
San Francisco Co., CA853KC241969KC262260–KC262263
Scotland, United KingdomP192084 MH128507
Switzerland- GQ395584
-NEMBAR256 KU517169
United KingdomNEMBAR1145 KU517179
NEMBAR1174 KU517180
NEMBAR1180 KU517181
- KU517182
M. floridensisPeach Co., Georgia, USAMf1 EU364884
Mf3 EU364885
Mf_GA2 EU364887
Mf_GA3 EU364888
M. graminicolaChina KY250093
MG917042–MG917045
- KM111533
Florida, USAP169011 MH128475
Phillippines HG529223
Taiwan KJ728847
Vietnam MH332671
Vietnam MH332672
M. graminisSan Diego, Co., CA730JN019331
M. haplaChina MW228371
Hawaii, USA AY52841
Maryland, USA*** (culture) AY528417
AF201338
Netherlands7J2 KM491210
Netherlands DQ145641
Switzerland6C1 KM491209
Qujing County, China MK359810
M. javanicaJapan KF880398
Maricopa Co., Arizona, USA001JN019333
M. mali-NEMBAR1327 KU517178
M. marylandiKing Co., Washington, USA438JN019324
M. minorNetherlands* LW68D KC262259 JN241933 (cl 2636)KC262234 (cl. 2758)
JN241934 (cl 2638)KC262235 (cl. 2759)
JN241938 (cl 2640)KC262236 (cl. 2760)
JN241930 (cl 2641)KC262237 (cl. 2761)
Northern Ireland, United Kingdom*202 KC262256 JN241940 (cl 2618)KC262242 (cl 2746)
JN241935 (cl 2619)
JN241942 (cl 2620)
JN241941 (cl 2621)
Northern Ireland, United Kingdom*203 KC262257 JN241931 (cl 2624)
JN241942 (cl 2625)
JN241937 (cl 2627)
Northern Ireland, United Kingdom*204 KC262258 JN241928 (cl 2633)KC262238 (cl 2748)
JN241932 (cl 2634)KC262239 (cl 2749)
JN241936 (cl 2635)KC262240 (cl 2751)
KC262241 (cl 2750)
-NEMBAR070 KU517170
M. naasiAda Co., Idaho, USA111B1MT406252OQ721995 MT408951MT408947 (cl 3870)
111B2 OQ721994MT408952MT408952MT408948 (cl 3872)
111B3 OQ721996MT408953MT408953MT408949 (cl 3874)
MT408950 (cl 3875)
Idaho, USA**N326 MH128479
Jackson Co, Oregon, USA410JN019305
Lane Co., Oregon, USA054 JN241903
Kitsap Co., Washington, USA351JN019316
King Co., Washington, USA194 OQ721998
Linn Co., Oregon, USA12A KM491211
KM491212
Linn Co., Oregon, USA010
Monterey Co., California, USA707
Stanislaus Co., California, USA263
San Luis Obispo, Co., California, USA163
San Diego Co., CA
Linn Co., Oregon, USA12A KM491214
Monterey Co., California, USA010 JN241909KC262247 (cl 1229)
Stanislaus Co., California, USA707 KC262248 (cl 1230)
San Luis Obispo, Co., California, USA263 KC262249 (cl 1234)
San Diego Co., CA163 KC262250 (cl 1232)
Reading, UK*205 KC262251 (cl 1231)
KC262252 (cl 1233)
JN241897
JN241899
JN241910
JN241913
KM491213
Reading, UK*205 KM491215
San Francisco Co., CA79G3
Reading, UK*205 JN241944 (cl 2541)
San Francisco Co., CA79G3 KM491208
Sanpete Co, UTP199069 MH128480
Sanpete Co, UTP199071 MH128481
Sanpete Co, UTP199072 MH128482
Santa Clara Co., CA245 OQ721997 JN241912
OQ721999
Van Buren Co., MI MG821326
Costa Rica KY962665
M. nataleiSpain-EU570214
M. salasiMorocco-KP896293
M. silvestriNetherlands AF435801
M. spartelensisOR (garlic mustard)95F5 MH590652 (cl 3255)
MH590653 (cl 3256)
95F6 MH590654 (cl 3260)
MH590655 (cl 3261)
MH590656 (cl 3262)
MH590657 (cl 3263)
M. trifoliophila
Meloidogyne sp.

Morphometrics of infective second-stage juveniles of Meloidogyne naasi_ Values expressed in the form mean +/− standard deviation (range)_

CharactersIdaho Second-stage juveniles (n = 30)M. naasi (Franklin, 1965) (n = 25)M. naasi (Karssen et al., 2002) (n = 4)M. naasi (Zhao et al., 2017) (n = 17)
Linear (μm)
  Body length427.9 ±16.73 (390 – 460)435 (418 – 465)421 ± 8.1 (410 – 429)429 ± 16.1 (397 – 467)
  Maximum body width16.2 (15.0 – 17.5)*15 ± 0.95 (14 – 17.5)14.1 ± 0.6 (13.3 – 14.5)15.9 ± 0.7 (14.4 – 17.3)
  Stylet length12.09 ± 0.56 (11.0 – 13.0)14 (13 – 15)13.3 ± 0.5 (12.6 – 13.9)11.7 ± 0.6 (10.8 –1 2.4)
  Body width at anus10.3 ± 0.9 (9.0 – 12.0)*11 (9 –13)--
  Tail length70.3 ± 5.04 (62.0 – 80.0)70 (52 – 78)66.0 ± 3.9 (61.0 –70.0)68.2 ± 8.0 (55–78)
  Hyaline tail terminus length21.4 ± 2.16 (17.0 – 26.0)n.d.17.9 ± 1.8 (15.8 – 19.6)24.7 ± 2.6 (19.6 – 29.8)
  Lines in lateral field44--
Ratios
  a = body length/greatest body diameter35.61 ± 2.21 (32.24 – 40.91)28 (25 – 32)30 ± 1.5 (28.3 – 31.8)27.1 ± 1.9 (24.2 – 30.7)
  c = body length/tail length6.11 ± 0.43 (4.94 – 6.79)6.2 (n.d.)6.4 ± 0.3 (6.0 – 6.7)6.4 ± 0.8 (5.6 – 8.0)
DOI: https://doi.org/10.2478/jofnem-2023-0051 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Submitted on: Jun 28, 2023
Published on: Nov 20, 2023
Published by: Society of Nematologists, Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Andrea M. Skantar, Zafar A. Handoo, Mihail R. Kantor, Maria N. Hult, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.