References
- Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V.C. and Caillaud, M.C. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature biotechnology, 26(8):909–915.
- Abade, A. D. S., Porto, L. F., Ferreira, P. A., and Vidal, F. D. B. 2021. Nemanet: A convolutional neural network model for identification of nematodes soybean crop in Brazil. arXiv preprint arXiv:2103.03717.
- Akintayo, A., Tylka, G. L., Singh, A. K., Ganapathysubramanian, B., Singh, A., and Sarkar, S. 2018. A deep learning framework to discern and count microscopic nematode eggs. Scientific reports, 8(1):1–11.
- Barker, K. R., Schmitt, D. P., and Imbriani, J. L. 1985. Nematode population dynamics with emphasis on determining damage potential to crops. An advanced treatise on Meloidogyne, 2:135–148.
- Benjumea, A., Teeti, I., Cuzzolin, F., and Bradley, A. 2021. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. arXiv preprint arXiv:2112.11798.
- Cheng, X., Zhang, Y., Chen, Y., Wu, Y., and Yue, Y. 2017. Pest identification via deep residual learning in complex background. Computers and Electronics in Agriculture, 141:351–356.
- Chitwood, D.J. 2003. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Management Science: Formerly Pesticide Science, 59(6–7):748–753.
- Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., and Tian, Q. 2019. Centernet: Keypoint triplets for object detection. Pp. 6569–6578 in Proceedings of the IEEE/CVF international conference on computer vision.
- Dutta, A. (n.d.). VGG Image Annotator.
https://annotate.officialstatistics.org/ - Gooris, J., and d’Herde, C. J. 1972. A method for the quantitative extraction of eggs and second stage juveniles of Meloidogyne spp. from soil.
- Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. 2017. Densely connected convolutional networks. Pp. 4700–4708 in Proceedings of the IEEE conference on computer vision and pattern recognition.
- Johnson, D. 2008. How to Do Everything: Digital Camera [Online]; McGraw Hill Professional: New York; 336.
- Kasinathan, T., Singaraju, D., and Uyyala, S. R. 2021. Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture, 8(3):446–457.
- Kranse, O.P., Ko, I., Healey, R. et al. 2022. A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for Arabidopsis thaliana. Plant Methods 18:134.
https://doi.org/10.1186/s13007-022-00963-2 - Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. 2017. Focal loss for dense object detection. Pp. 2980–2988 in Proceedings of the IEEE international conference on computer vision.
- Liu, H., Sun, F., Gu, J., and Deng, L. 2022. Sf-yolov5: A lightweight small object detection algorithm based on improved feature fusion mode. Sensors, 22(15):5817.
- Patrick. 2022. Turnaround times for routine nematode testing expected to be long, Morning Ag Clips. Available at:
https://www.morningagclips.com/turnaround-times-for-routine-nematode-testing-expected-to-be-long/ (Accessed: 28 June 2023). - Picek, L., Šulc, M., Matas, J., Heilmann-Clausen, J., Jeppesen, T. S., and Lind, E. 2022. Automatic fungi recognition: Deep learning meets mycology. Sensors, 22(2):633.
- Ray, S. F. 2002. Applied Photographic Optics, 3rd Edition; Focal Press: Oxford: 231–232.
- Qing, X., Wang, Y., Lu, X., Li, H., Wang, X., Li, H., and Xie, X. 2022. NemaRec: A deep learning-based web application for nematode image identification and ecological indices calculation. European Journal of Soil Biology, 110:103408.
- Shabrina, N. H., Lika, R. A., and Indarti, S. (2023). Deep learning models for automatic identification of plant-parasitic nematode. Artificial Intelligence in Agriculture.
- Tan, M., Pang, R., and Le, Q. V. 2019. Efficientdet: scalable and efficient object detection. arXiv. arXiv preprint arXiv:1911.09070, 10.
- Todd, T. C., and Jardine, D. J. 1993. Nematodes: management guidelines for Kansas crops. Cooperative Extension Service, Kansas State University.
- Uhlemann, J., Cawley, O., and Kakouli-Duarte, T. 2020. Nematode Identification using Artificial Neural Networks. Pp. 13–22 in DeLTA.
- Wei, Z., Duan, C., Song, X., Tian, Y., and Wang, H. 2020. Amrnet: Chips augmentation in aerial images object detection. arXiv preprint arXiv:2009.07168.
- Xie C., Wang R., Zhang J., Chen P., Dong W., Li R., Chen T., and Chen H. 2018. Multi-level learning features for automatic classification of field crop pests. Comput Electron Agric, 152:233–241.
- Zasada, I.A., Kitner, M., Wram, C., Wade, N., Ingham, R.E., Hafez, S., Mojtahedi, H., Chavoshi, S., and Hammack, N. 2019. Trends in occurrence, distribution, and population densities of plant-parasitic nematodes in the Pacific Northwest of the United States from 2012 to 2016. Plant Health Progress, 20(1):20–28.
- Zieliński, B., Sroka-Oleksiak, A., Rymarczyk, D., Piekarczyk, A., and Brzychczy-Włoch, M. 2020. Deep learning approach to describe and classify fungi microscopic images. PLoS ONE 15(6): e0234806.