Have a personal or library account? Click to login
Plant Parasitic Nematode Identification in Complex Samples with Deep Learning Cover

Plant Parasitic Nematode Identification in Complex Samples with Deep Learning

Open Access
|Oct 2023

References

  1. Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V.C. and Caillaud, M.C. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature biotechnology, 26(8):909–915.
  2. Abade, A. D. S., Porto, L. F., Ferreira, P. A., and Vidal, F. D. B. 2021. Nemanet: A convolutional neural network model for identification of nematodes soybean crop in Brazil. arXiv preprint arXiv:2103.03717.
  3. Akintayo, A., Tylka, G. L., Singh, A. K., Ganapathysubramanian, B., Singh, A., and Sarkar, S. 2018. A deep learning framework to discern and count microscopic nematode eggs. Scientific reports, 8(1):1–11.
  4. Barker, K. R., Schmitt, D. P., and Imbriani, J. L. 1985. Nematode population dynamics with emphasis on determining damage potential to crops. An advanced treatise on Meloidogyne, 2:135–148.
  5. Benjumea, A., Teeti, I., Cuzzolin, F., and Bradley, A. 2021. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. arXiv preprint arXiv:2112.11798.
  6. Cheng, X., Zhang, Y., Chen, Y., Wu, Y., and Yue, Y. 2017. Pest identification via deep residual learning in complex background. Computers and Electronics in Agriculture, 141:351–356.
  7. Chitwood, D.J. 2003. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Management Science: Formerly Pesticide Science, 59(6–7):748–753.
  8. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., and Tian, Q. 2019. Centernet: Keypoint triplets for object detection. Pp. 6569–6578 in Proceedings of the IEEE/CVF international conference on computer vision.
  9. Dutta, A. (n.d.). VGG Image Annotator. https://annotate.officialstatistics.org/
  10. Gooris, J., and d’Herde, C. J. 1972. A method for the quantitative extraction of eggs and second stage juveniles of Meloidogyne spp. from soil.
  11. Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. 2017. Densely connected convolutional networks. Pp. 4700–4708 in Proceedings of the IEEE conference on computer vision and pattern recognition.
  12. Johnson, D. 2008. How to Do Everything: Digital Camera [Online]; McGraw Hill Professional: New York; 336.
  13. Kasinathan, T., Singaraju, D., and Uyyala, S. R. 2021. Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture, 8(3):446–457.
  14. Kranse, O.P., Ko, I., Healey, R. et al. 2022. A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for Arabidopsis thaliana. Plant Methods 18:134. https://doi.org/10.1186/s13007-022-00963-2
  15. Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. 2017. Focal loss for dense object detection. Pp. 2980–2988 in Proceedings of the IEEE international conference on computer vision.
  16. Liu, H., Sun, F., Gu, J., and Deng, L. 2022. Sf-yolov5: A lightweight small object detection algorithm based on improved feature fusion mode. Sensors, 22(15):5817.
  17. Patrick. 2022. Turnaround times for routine nematode testing expected to be long, Morning Ag Clips. Available at: https://www.morningagclips.com/turnaround-times-for-routine-nematode-testing-expected-to-be-long/ (Accessed: 28 June 2023).
  18. Picek, L., Šulc, M., Matas, J., Heilmann-Clausen, J., Jeppesen, T. S., and Lind, E. 2022. Automatic fungi recognition: Deep learning meets mycology. Sensors, 22(2):633.
  19. Ray, S. F. 2002. Applied Photographic Optics, 3rd Edition; Focal Press: Oxford: 231–232.
  20. Qing, X., Wang, Y., Lu, X., Li, H., Wang, X., Li, H., and Xie, X. 2022. NemaRec: A deep learning-based web application for nematode image identification and ecological indices calculation. European Journal of Soil Biology, 110:103408.
  21. Shabrina, N. H., Lika, R. A., and Indarti, S. (2023). Deep learning models for automatic identification of plant-parasitic nematode. Artificial Intelligence in Agriculture.
  22. Tan, M., Pang, R., and Le, Q. V. 2019. Efficientdet: scalable and efficient object detection. arXiv. arXiv preprint arXiv:1911.09070, 10.
  23. Todd, T. C., and Jardine, D. J. 1993. Nematodes: management guidelines for Kansas crops. Cooperative Extension Service, Kansas State University.
  24. Uhlemann, J., Cawley, O., and Kakouli-Duarte, T. 2020. Nematode Identification using Artificial Neural Networks. Pp. 13–22 in DeLTA.
  25. Wei, Z., Duan, C., Song, X., Tian, Y., and Wang, H. 2020. Amrnet: Chips augmentation in aerial images object detection. arXiv preprint arXiv:2009.07168.
  26. Xie C., Wang R., Zhang J., Chen P., Dong W., Li R., Chen T., and Chen H. 2018. Multi-level learning features for automatic classification of field crop pests. Comput Electron Agric, 152:233–241.
  27. Zasada, I.A., Kitner, M., Wram, C., Wade, N., Ingham, R.E., Hafez, S., Mojtahedi, H., Chavoshi, S., and Hammack, N. 2019. Trends in occurrence, distribution, and population densities of plant-parasitic nematodes in the Pacific Northwest of the United States from 2012 to 2016. Plant Health Progress, 20(1):20–28.
  28. Zieliński, B., Sroka-Oleksiak, A., Rymarczyk, D., Piekarczyk, A., and Brzychczy-Włoch, M. 2020. Deep learning approach to describe and classify fungi microscopic images. PLoS ONE 15(6): e0234806.
DOI: https://doi.org/10.2478/jofnem-2023-0045 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Submitted on: Jul 7, 2023
|
Published on: Oct 16, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Sahil Agarwal, Zachary C. Curran, Guohao Yu, Shova Mishra, Anil Baniya, Mesfin Bogale, Kody Hughes, Oscar Salichs, Alina Zare, Zhe Jiang, Peter DiGennaro, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.