Have a personal or library account? Click to login
Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort Cover

Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort

Open Access
|Aug 2025

References

  1. Alves EAS, Salazar TC do N, Silvino VO, Cardoso GA, dos Santos MAP. Association between phase angle and adverse clinical outcomes in hospitalized patients with COVID-19: A systematic review. Nutr Clin Pract. 2022;37:1105–1116. https://doi.org/10.1002/ncp.10901.
  2. Bellido D, García-García C, Talluri A, Lukaski HC, García-Almeida JM. Future lines of research on phase angle: Strengths and limitations. Rev Endocr Metab Disord. 2023;24:563–83. https://doi.org/10.1007/s11154-023-09803-7.
  3. Peng Z, Xu D, Li Y, Peng Y, Liu X. Phase Angle as a Comprehensive Tool for Nutritional Monitoring and Management in Patients with Crohn's Disease. Nutrients. 2022;14:2260. https://doi.org/10.3390/nu14112260.
  4. Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, et al. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng. 2021;7:1962–1986. https://doi.org/10.1021/acsbiomaterials.0c01570.
  5. Pérez-Morales R, Donate-Correa J, Martín-Núñez E, Pérez-Delgado N, Ferri C, López-Montes A, et al. Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Ren Fail. 2021;43:821–829. https://doi.org/10.1080/0886022X.2021.1922442.
  6. Campa F, Gobbo LA, Stagi S, Cyrino LT, Toselli S, Marini E, et al. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur J Appl Physiol. 2022;122(3):561–589. https://doi.org/10.1007/s00421-021-04879-y.
  7. Carobbio ALC, Cheng Z, Gianiorio T, Missale F, Africano S, Ascoli A, et al. Electric Bioimpedance Sensing for the Detection of Head and Neck Squamous Cell Carcinoma. Diagnostics. 2023;13:2453. https://doi.org/10.3390/diagnostics13142453.
  8. Schotman JM, Van Borren MM, Kooistra MP, Doorenbos CJ, de Boer H. Towards personalized hydration assessment in patients, based on measurement of total body electrical resistance: Back to basics. Clinical nutrition ESPEN. 2020;35:116–122. https://doi.org/10.1016/j.clnesp.2019.10.018.
  9. AlDisi R, Bader Q, Bermak A. Hydration Assessment Using the Bio-Impedance Analysis Method. Sensors. 2022;22(17):6350. https://doi.org/10.3390/s22176350.
  10. Karavetian M, Salhab N, Rizk R, Poulia KA. Malnutrition-inflammation score VS phase angle in the era of GLIM criteria: A cross-sectional study among hemodialysis patients in UAE. Nutrients. 2019;11. https://doi.org/10.3390/nu11112771.
  11. Lukaski HC, García-Almeida JM. Phase angle in applications of bioimpedance in health and disease. Reviews in Endocrine and Metabolic Disorders. 2023;24(3):367–370. https://doi.org/10.1007/s11154-023-09799-0.
  12. Van der Sande FM, Van de Wal-Visscher ER, Stuard S, Moissl U, Kooman JP. Using bioimpedance spectroscopy to assess volume status in dialysis patients. Blood Purif. 2020; 49(1):178–184. https://doi.org/10.1159/000504079.
  13. Bello JLG, Luna TB, Lara Lafargue A, Ciria HMC, Zulueta YA, Bioimpedance formalism: A new approach for accessing the health status of cell and tissues, Bioelectrochemistry. 2024;160:108799. https://doi.org/10.1016/j.bioelechem.2024.108799.
  14. Chaunzwa TL, Qian JM, Li Q, Ricciuti B, Nuernberg L, Johnson JW, Weiss J, Zhang Z, MacKay J, Kagiampakis I, Bikiel D, Di Federico A, Alessi JV, Mak RH, Jacob E, Awad MM, Aerts HJWL. Body Composition in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. JAMA Oncol. 2024;10:773–783. https://doi.org/10.1001/JAMAONCOL.2024.1120.
  15. Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical Impedance Spectroscopy in Skin Cancer Diagnosis. Dermatol. Clin. 2017;35:489–493. https://doi.org/10.1016/j.det.2017.06.009.
  16. Baidillah MR, Riyanto R, Busono P, Karim S, Febryarto R, Astasari A, Sangaji D, Taruno WP. Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques. Measurement. 2024;226:114111. https://doi.org/10.1016/J.MEASUREMENT.2023.114111.
  17. da Silva BR, Rufato S, Mialich MS, Cruz LP, Gozzo T, Jordão AA. Phase angle is related to oxidative stress and antioxidant biomarkers in breast cancer patients undergoing chemotherapy. PLoS One. 2023;18:e0283235. https://doi.org/10.1371/journal.pone.0283235.
  18. Jung M, Jeon JY, Yun GJ, Yang S, Kwon S, Seo YJ. Reference values of bioelectrical impedance analysis for detecting breast cancer-related lymphedema. Med. (United States). 2018;97:1–6. https://doi.org/10.1097/MD.0000000000012945.
  19. Mansouri S, Alhadidi T, Ben Azouz M. Breast cancer detection using low-frequency bioimpedance device. Breast Cancer Targets Ther. 2020;12:109–116. https://doi.org/10.2147/BCTT.S274421.
  20. Aljarrah M, Salman F. A Simple Analysis of Impedance Spectroscopy: Review. J Inst Eng. 2021;102(1):237–242. https://doi.org/10.1007/s40033-021-00252-7.
  21. Pingel J, Harrison A, Von Walden F, Hjalmarsson E, Bartels EM. Multi-frequency bioimpedance: a non-invasive tool for muscle-health assessment of adults with cerebral palsy. J Muscle Res Cell Motil. 2020;41:211–219. https://doi.org/10.1007/s10974-020-09579-2.
  22. Kanoun O, Kallel AY, Nouri H, Atitallah BB, Haddad D, Hu Z, et al. Impedance spectroscopy: applications, advances and future trends. IEEE Instrumentation & Measurement Magazine. 2022;25(3):11–21. https://doi.org/10.1109/MIM.2022.9759355.
  23. Wang LC, Raimann JG, Tao X, Preciado P, Thwin O, Rosales L, et al. Estimation of fluid status using three multifrequency bioimpedance methods in hemodialysis patients. Hemodial Int. 2022;26(4):575–587. https://doi.org/10.1111/hdi.13034.
  24. Abasi S, Aggas JR, Garayar-Leyva GG, Walther BK, Guiseppi-Elie A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS Measurement Science. 2022;2(6):495–516. https://doi.org/10.1021/acsmeasuresciau.2c00033.
  25. Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Ellershaw J. The association of hydration status with physical signs, symptoms and survival in advanced cancer - The use of Bioelectrical Impedance Vector Analysis (BIVA) Technology to evaluate fluid volume in palliative care: An observational study. PLoS One. 2016;11:e0163114. https://doi.org/10.1371/journal.pone.0163114.
  26. Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994;46:534–539. https://doi.org/10.1038/ki.1994.305.
  27. Campa F, Toselli S. Bioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018;13:1250–1253. https://doi.org/10.1123/IJSPP.2018-0039.
  28. Martins PC, Gobbo LA, Silva DAS. Bioelectrical impedance vector analysis (BIVA) in university athletes. J. Int. Soc. Sports Nutr. 2021;18:1–8. https://doi.org/10.1186/S12970-020-00403-3/FIGURES/3.
  29. Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Stanley S, Ellershaw J. Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clin. Nutr. ESPEN. 2019;30:59–66. https://doi.org/10.1016/j.clnesp.2019.02.006.
  30. Limon-Miro AT, Valencia ME, Lopez-Teros V, Guzman-Leon AE, Mendivil-Alvarado H, Astiazaran-Garcia H. Bioelectric impedance vector analysis (Biva) in breast cancer patients: A tool for research and clinical practice. Med. 2019;55:663. https://doi.org/10.3390/medicina55100663.
  31. Bello JLG, Lafargue AL, Ciria HC, Luna TB, Leyva YZ. Methodology for integrated analysis of vector- and spectroscopic bioimpedance methods. J. Electr. Bioimpedance. 2024;15:154–161. https://doi.org/10.2478/JOEB-2024-0018.
  32. Koh DM, Papanikolaou N, Bick U, Illing R, Kahn CE, Kalpathi-Cramer J, et al. Artificial Intelligence and Machine Learning in Cancer Imaging. Commun Med. 2022;2(1):1–14. https://doi.org/10.1038/s43856-022-00199-0
  33. Trivizakis E, Papadakis GZ, Souglakos I, Papanikolaou N, Koumakis L, Spandidos DA, et al. Artificial Intelligence Radiogenomics for Advancing Precision and Effectiveness in Oncologic Care (Review). Int J Oncol. 2020;57(1):43–53. https://doi.org/10.3892/ijo.2020.5063.
  34. Luna TB, Bello JLG, Carbonell AG, Montoya A de la CR, Lafargue AL, Ciria HMC, Zulueta YA. The role of various physiological and bioelectrical parameters for estimating the weight status in infants and juveniles cohort from the Southern Cuba region: a machine learning study. BMC Pediatr. 2024;24:313. https://doi.org/10.1186/s12887-024-04789-w.
  35. Luna TB, Bello JLG, Carbonell AG, Montoya A de la CR, Lafargue AL, Ciria HMC, Zulueta YA. Integrating classification and regression learners with bioimpedance methods for estimating weight status in infants and juveniles from the southern Cuba region. BMC Pediatr. 2024;24:1–17. https://doi.org/10.1186/s12887-024-04841-9.
  36. Bello JLG, Luna TB, Carbonell AG, Román Montoya A de la C, Lara Lafargue A, Ciria HMC, Zulueta YA. Cancer predictive model derived from bioimpedance measurements using machine learning methods. Clin. Nutr. Open Sci. 2024;58:131–145. https://doi.org/10.1016/j.nutos.2024.10.006.
  37. Charilaou P, Battat R. Machine learning models and over-fitting considerations. World J Gastroenterol. 2022;28(5):605–607. https://doi.org/10.3748/wjg.v28.i5.605
  38. Bagui S, Li K. Resampling imbalanced data for network intrusion detection datasets. J. Big Data. 2021;8:6. https://doi.org/10.1186/s40537-020-00390-x.
  39. Chakraborty P, Rafiammal SS, Tharini C, Jamal DN. Influence of Bias and Variance in Selection of Machine Learning Classifiers for Biomedical Applications. In Smart Data Intelligence: Proceedings of ICSMDI 2022 (pp. 459–472). Singapore: Springer Nature. https://doi.org/10.1007/978-981-19-3311-0_39.
  40. He H, Ma Y. Imbalanced learning: Foundations, algorithms, and applications. Imbalanced Learn. Found. Algorithms, Appl. (2013) 1–210. https://doi.org/10.1002/9781118646106.
  41. Refaeilzadeh P, Tang L, Liu H. Cross-Validation. Encycl Database Syst. 2009:532–8. https://doi.org/10.1007/978-0-387-39940-9_565.
  42. Arab A, Karimi E, Vingrys K, Shirani F. Is phase angle a valuable prognostic tool in cancer patients' survival? A systematic review and meta-analysis of available literature. Clin. Nutr. 2021;40:3182–3190. https://doi.org/10.1016/j.clnu.2021.01.027.
  43. Axelsson L, Silander E, Bosaeus I, Hammerlid E. Bioelectrical phase angle at diagnosis as a prognostic factor for survival in advanced head and neck cancer. Eur. Arch. Oto-Rhino-Laryngology. 2018;275:2379–2386. https://doi.org/10.1007/s00405-018-5069-2.
  44. Amano K, Bruera E, Hui D. Diagnostic and prognostic utility of phase angle in patients with cancer. Rev. Endocr. Metab. Disord. 2023;24:479–489. https://doi.org/10.1007/s11154-022-09776-z.
Language: English
Page range: 89 - 98
Submitted on: Jan 10, 2025
Published on: Aug 4, 2025
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Jose Luis García Bello, Taira Batista Luna, My Phuong Pham-Ho, Minh Tho Nguyen, Alcibíades Lara Lafargue, Héctor Manuel Camué Ciria, Yohandys A. Zulueta, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.