References
- Hesam AA, Taghipour L, Rasekhi S, Fallahi S, Hesam Z. Investigating the Multiple Aspects of Mental Health in Infertile Women. Int J Ment Health Addict. 2017 Aug;15(4):928–32.
https://doi.org/10.1007/s11469-016-9675-1 - Ramírez-González JA, Vaamonde-Lemos R, Cunha-Filho JS, Varghese AC, Swanson RJ. Overview of the Female Reproductive System. In: Vaamonde D, Du Plessis SS, Agarwal A, editors. Exercise and Human Reproduction [Internet]. New York, NY: Springer New York; 2016 [cited 2024 Dec 16]. p. 19–46.
https://doi.org/10.1007/978-1-4939-3402-7_2 - Nicoloro-SantaBarbara JM, Lobel M, Bocca S, Stelling JR, Pastore LM. Psychological and emotional concomitants of infertility diagnosis in women with diminished ovarian reserve or anatomical cause of infertility. Fertil Steril. 2017 Jul;108(1):161–7.
https://doi.org/10.1016/j.fertnstert.2017.05.008 - Chen J, Fang Y, Xu Y, Sun H. Role of m6A modification in female infertility and reproductive system diseases. Int J Biol Sci. 2022;18(9):3592–604.
https://doi.org/10.7150/ijbs.69771 - Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater. 2021 Sep;132:288–312.
https://doi.org/10.1016/j.actbio.2021.04.032 - Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, De Mouzon J, Sokol R, et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil Steril. 2017 Sep;108(3):393–406.
https://doi.org/10.1016/j.fertnstert.2017.06.005 - Cox CM, Thoma ME, Tchangalova N, Mburu G, Bornstein MJ, Johnson CL, et al. Infertility prevalence and the methods of estimation from 1990 to 2021: a systematic review and meta-analysis. Hum Reprod Open. 2022 Sep 10;2022(4):hoac051.
https://doi.org/10.1093/hropen/hoac051 - Infertility Prevalence Estimates, 1990–2021. 1st ed. Geneva: World Health Organization; 2023. 1 p.
- Katz P, Nachtigall R, Showstack J. The economic impact of the assisted reproductive technologies. Nat Cell Biol. 2002 Oct;4:S29–32.
https://doi.org/10.1038/ncb-nm-fertilityS29 - Chian RC, Lim JH, Tan SL. State of the art in in-vitro oocyte maturation: Curr Opin Obstet Gynecol. 2004 Jun;16(3):211–9.
https://doi.org/10.1097/00001703-200406000-00003 - Nosrati R, Graham PJ, Zhang B, Riordon J, Lagunov A, Hannam TG, et al. Microfluidics for sperm analysis and selection. Nat Rev Urol. 2017 Dec;14(12):707–30.
https://doi.org/10.1038/nrurol.2017.175 - Kashaninejad N, Shiddiky MJA, Nguyen N. Advances in Microfluidics-Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System-on-a-Chip. Adv Biosyst. 2018 Mar;2(3):1700197.
https://doi.org/10.1002/adbi.201700197 - Whitesides GM. The origins and the future of microfluidics. Nature. 2006 Jul;442(7101):368–73.
https://doi.org/10.1038/nature05058 - Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014 Mar;507(7491):181–9.
https://doi.org/10.1038/nature13118 - Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip. 2005;5(11):1229.
https://doi.org/10.1039/b504397m - Suh RS, Zhu X, Phadke N, Ohl DA, Takayama S, Smith GD. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod. 2006 Feb 1;21(2):477–83.
https://doi.org/10.1093/humrep/dei323 - Han C, Zhang Q, Ma R, Xie L, Qiu T, Wang L, et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab Chip. 2010;10(21):2848.
https://doi.org/10.1039/c005296e - Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for life sciences. J Nanobiotechnology. 2023 Mar 11;21(1):85.
https://doi.org/10.1186/s12951-023-01846-x - Hassan HA. Clinical Assisted Reproduction: Cumulus Cell Contribution to Cytoplasmic Maturation and Oocyte Developmental Competence In Vitro. J Assist Reprod Genet. 2001 Oct 1;18(10):539–43.
- De Vos A, Van Landuyt L, Van Ranst H, Vandermonde A, D’Haese V, Sterckx J, et al. Randomized sibling-oocyte study using recombinant human hyaluronidase versus bovine-derived Sigma hyaluronidase in ICSI patients. Hum Reprod. 2008 May 15;23(8):1815–9.
https://doi.org/10.1093/humrep/den212 - Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte. Hum Reprod. 2012 Aug 1;27(suppl_1):i2–21.
https://doi.org/10.1093/humrep/des200 - Chang MC. Fertilization of Rabbit Ova in vitro. Nature. 1959 Aug;184(4684):466–7.
https://doi.org/10.1038/184466a0 - Behringer R. Manipulating the mouse embryo: a laboratory manual. Fourth edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2014. 814 p.
- Stern R, Jedrzejas MJ. Hyaluronidases: Their Genomics, Structures, and Mechanisms of Action. Chem Rev. 2006 Mar 1;106(3):818–39.
https://doi.org/10.1021/cr050247k - Camaioni A, Hascall VC, Yanagishita M, Salustri A. Effects of exogenous hyaluronic acid and serum on matrix organization and stability in the mouse cumulus cell-oocyte complex. J Biol Chem. 1993 Sep;268(27):20473–81.
https://doi.org/10.1016/S0021-9258(20)80750-9 - Cross PC, Brinster RL. In Vitro Development of Mouse Oocytes1. Biol Reprod. 1970 Dec 1;3(3):298–307.
https://doi.org/10.1093/biolreprod/3.3.298 - Itagaki Y, Toyoda Y. Effects of Prolonged Sperm Preincubation and Elevated Calcium Concentration on Fertilization of Cumulus-Free Mouse Eggs in Vitro. J Reprod Dev. 1992;38(3):219–24.
https://doi.org/10.1262/jrd.38.219 - Evison M, Pretty C, Taylor E, Franklin C. Human recombinant hyaluronidase (Cumulase®) improves intracytoplasmic sperm injection survival and fertilization rates. Reprod Biomed Online. 2009 Jan;18(6):811–4.
https://doi.org/10.1016/S1472-6483(10)60030-2 - Taylor TH, Elliott T, Colturato LF, Straub RJ, Mitchell-Leef D, Nagy ZP. Comparison of bovine- and recombinant human-derived hyaluronidase with regard to fertilization rates and embryo morphology in a sibling oocyte model: a prospective, blinded, randomized study. Fertil Steril. 2006 May;85(5):1544–6.
https://doi.org/10.1016/j.fertnstert.2005.10.053 - Lee JH, Yoo M, Lee SM, Park SJ, Kil TY, Kim MK. Toxicity of the recombinant human hyaluronidase ALT-BC4 on embryonic development. J Anim Sci Technol. 2021 Mar;63(2):272–80.
https://doi.org/10.5187/jast.2021.e34 - Ishizuka Y, Takeo T, Nakao S, Yoshimoto H, Hirose Y, Sakai Y, et al. Prolonged exposure to hyaluronidase decreases the fertilization and development rates of fresh and cryopreserved mouse oocytes. J Reprod Dev. 2014;60(6):454–9.
https://doi.org/10.1262/jrd.2014-045 - Smith GD, Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol Hum Reprod. 2017 Jan 27;gaw076.
https://doi.org/10.1093/molehr/gaw076 - Zeringue HC, Beebe DJ, Wheeler MB. Removal of Cumulus from Mammalian Zygotes using Microfluidic Techniques. Biomed Microdevices. 2001 Sep 1;3(3):219–24.
https://doi.org/10.1023/A:1011463330597 - Zeringue HC, Rutledge JJ, Beebe DJ. Early mammalian embryo development depends on cumulus removal technique. Lab Chip. 2005;5(1):86.
https://doi.org/10.1039/b316494m - Weng L, Lee GY, Liu J, Kapur R, Toth TL, Toner M. On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive therapy. Lab Chip. 2018;18(24):3892–902.
https://doi.org/10.1039/C8LC01075G - Al-Halhouli A, Al-Faqheri W, Alhamarneh B, Hecht L, Dietzel A. Spiral Microchannels with Trapezoidal Cross Section Fabricated by Femtosecond Laser Ablation in Glass for the Inertial Separation of Microparticles. Micromachines. 2018 Apr 9;9(4):171.
https://doi.org/10.3390/mi9040171 - Chen Z, Memon K, Cao Y, Zhao G. A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes. Microsyst Nanoeng. 2020;6:55.
https://doi.org/10.1038/s41378-020-0160-4 - Mokhtare A, Davaji B, Xie P, Yaghoobi M, Rosenwaks Z, Lal A, et al. Non-contact ultrasound oocyte denudation. Lab Chip. 2022 Feb 15;22(4):777–92.
https://doi.org/10.1039/D1LC00715G - Zhai R, Shan G, Dai C, Hao M, Zhu J, Ru C, et al. Automated Denudation of Oocytes. Micromachines. 2022 Aug 12;13(8):1301.
https://doi.org/10.3390/mi13081301 - Fang Y, Wu R, Lee JM, Chan LHM, Chan KYJ. Microfluidic in-vitro fertilization technologies: Transforming the future of human reproduction. TrAC Trends Anal Chem. 2023 Mar 1;160:116959.
https://doi.org/10.1016/j.trac.2023.116959 - Islam MdM, Loewen A, Allen PB. Simple, low-cost fabrication of acrylic based droplet microfluidics and its use to generate DNA-coated particles. Sci Rep. 2018 Jun 8;8(1):8763.
https://doi.org/10.1038/s41598-018-27037-5 - Nasser GA, Fath El-Bab AMR, Abdel-Mawgood AL, Mohamed H, Saleh AM. CO2 Laser Fabrication of PMMA Microfluidic Double T-Junction Device with Modified Inlet-Angle for Cost-Effective PCR Application. Micromachines. 2019 Oct 9;10(10):678.
https://doi.org/10.3390/mi10100678 - Adel M, Allam A, Sayour AE, Ragai HF, Umezu S, Fath El-Bab AMR. Fabrication of Spiral Low-Cost Microchannel with Trapezoidal Cross Section for Cell Separation Using a Grayscale Approach. Micromachines. 2023 Jun 30;14(7):1340.
https://doi.org/10.3390/mi14071340 - Mofadel H, Ali Hussein H, Fath El-Bab A, El-Sherry T. Bull sperm rheotaxis and kinematics in microfluidic channels with different heights. Assiut Vet Med J. 2023 Dec 23;0(0):0–0.
https://doi.org/10.21608/avmj.2023.228274.1176 - Mofadel HA, Hussein HA, Abd-Elhafee HH, El-Sherry TM. Impact of various cryo-preservation steps on sperm rheotaxis and sperm kinematics in bull. Sci Rep. 2024 May 18;14(1):11403.
https://doi.org/10.1038/s41598-024-61617-y - Hashem R, El-Hussieny H, Umezu S, El-Bab AMRF. Soft Tissue Compliance Detection in Minimally Invasive Surgery: Dynamic Measurement with Piezoelectric Sensor Based on Vibration Absorber Concept. J Robot Control JRC. 2024 Jul 22;5(5):1399–411.
- Prakash S, Kumar S. Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: An experimental investigation. Int J Precis Eng Manuf. 2015 Feb;16(2):361–6.
https://doi.org/10.1007/s12541-015-0047-8 - Helmy M, Fath El-Bab AM, El-Hofy H. Elimination of Clogging in PMMA Microchannels Using Water Assisted CO2 Laser Micromachining. Appl Mech Mater. 2015 Oct 19;799–800:407–12.
https://doi.org/10.4028/www.scientific.net/AMM.799-800.407 - Chen X, Li T, Shen J. CO2 Laser Ablation of Microchannel on PMMA Substrate for Effective Fabrication of Microfluidic Chips. Int Polym Process. 2016 May 29;31(2):233–8.
https://doi.org/10.3139/217.3184 - Imran M, Rahman RA, Ahmad M, Akhtar MN, Usman A, Sattar A. Fabrication of microchannels on PMMA using a low power CO2 laser. Laser Phys. 2016 Sep 1;26(9):096101.
https://doi.org/10.1088/1054-660X/26/9/096101 - Prakash S, Kumar S. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask. Opt Laser Technol. 2017 Sep;94:180–92.
https://doi.org/10.1016/j.optlastec.2017.03.034 - Mansour H, Soliman EA, El-Bab AMF, Abdel-Mawgood AL. Development of epoxy resin-based microfluidic devices using CO2 laser ablation for DNA amplification point-of-care (POC) applications. Int J Adv Manuf Technol. 2022 Jun;120(7–8):4355–72.
https://doi.org/10.1007/s00170-022-08992-w - Nasser GA, Abdel-Mawgood AL, Abouelsoud AA, Mohamed H, Umezu S, El-Bab AMRF. New cost effective design of PCR heating cycler system using Peltier plate without the conventional heating block. J Mech Sci Technol. 2021 Jul;35(7):3259–68.
https://doi.org/10.1007/s12206-021-0646-5 - Ngum LF, Matsushita Y, El-Mashtoly SF, Fath El-Bab AMR, Abdel-Mawgood AL. Separation of microalgae from bacterial contaminants using spiral microchannel in the presence of a chemoattractant. Bioresour Bioprocess. 2024 Apr 13;11(1):36.
https://doi.org/10.1186/s40643-024-00746-8 - Wang L, Han J, Su W, Li A, Zhang W, Li H, et al. Gut-on-a-chip for exploring the transport mechanism of Hg(II). Microsyst Nanoeng. 2023 Jan 1;9(1):1–13.
https://doi.org/10.1038/s41378-022-00447-2 - Pan X, Chen J, Han J, Zhang W, Su W, Xu Z, et al. Critical Suitability Evaluation of Caco-2 Cells for Gut-on-a-Chip. ACS Appl Mater Interfaces. 2024 Sep 25;16(38):51139–49.
https://doi.org/10.1021/acsami.4c11409 - Kyogoku H, Kitajima TS. The large cytoplasmic volume of oocyte. J Reprod Dev. 2023;69(1):1–9.
https://doi.org/10.1262/jrd.2022-101 - Raghu HM, Nandi S, Reddy SM. Follicle size and oocyte diameter in relation to developmental competence of buffalo oocytes in vitro. Reprod Fertil Dev. 2002;14(1):55.
https://doi.org/10.1071/RD01060 - Turathum B, Gao EM, Chian RC. The Function of Cumulus Cells in Oocyte Growth and Maturation and in Subsequent Ovulation and Fertilization. Cells. 2021 Sep 2;10(9):2292.
https://doi.org/10.3390/cells10092292 - Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, et al. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci. 2024 May 14;25(10):5349.
https://doi.org/10.3390/ijms25105349 - Govahi A, Eghbali S, Ghiasi NE, Zandieh Z, Ajdary M, Mehdizadeh R, et al. Changes in the transcriptomic profile of cumulus cells under the influence of cumulus-oocytes complex pre-incubation. Sci Rep. 2024 Jul 26;14(1):17183.
https://doi.org/10.1038/s41598-024-66822-3 - Quispe-Gutiérrez US, Olivera-Marocho LV, Ccopa Ccallata J, Pahuara Farfan LE, Barragán-Condori M, Berndtson JL. Effect of FSH and eCG on alpaca (Vicugna pacos) oocyte maturation in vitro. 2021 Jul 15 [cited 2024 Dec 17]; Available from:
https://hdl.handle.net/20.500.12955/2133 - Pelesko JA, Bernstein DH. Modeling MEMS and NEMS [Internet]. 0 ed. CRC Press; 2002 [cited 2024 Dec 16].
https://doi.org/10.1201/9781420035292 - Tao R, Ng T, Su Y, Li Z. A microfluidic rectifier for Newtonian fluids using asymmetric converging-diverging microchannels. Phys Fluids. 2020 May 1;32(5):052010.
https://doi.org/10.1063/5.0007200 - Panigrahi PK. Transport Phenomena in Microfluidic Systems [Internet]. 1st ed. Wiley; 2016 [cited 2024 Dec 16].
https://doi.org/10.1002/9781118298428 - Kim TH, Lee JM, Ahrberg CD, Chung BG. Development of the Microfluidic Device to Regulate Shear Stress Gradients. BioChip J. 2018 Dec;12(4):294–303.
https://doi.org/10.1007/s13206-018-2407-9 - Bruus H. Acoustofluidics 1: Governing equations in microfluidics. Lab Chip. 2011;11(22):3742.
https://doi.org/10.1039/c1lc20658c - Rossi M, Lindken R, Hierck BP, Westerweel J. Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow. Lab Chip. 2009;9(10):1403.
https://doi.org/10.1039/b822270n - Aung HH, Pothipan P, Aswakool J, Santironnarong S, Phatthanakun R, Pinrod V, et al. Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method. Biomicrofluidics. 2024 Sep 1;18(5):054114.
https://doi.org/10.1063/5.0226294 - Yang Y, Tan W, Chen C, Jin L, Huang B. Correlation of the position and status of the polar body from the fertilized oocyte to the euploid status of blastocysts. Front Genet. 2022 Sep 20;13:1006870.
https://doi.org/10.3389/fgene.2022.1006870