References
- Miao F, Wu D, Liu Z, Zhang R, Tang M and Li Y. Wearable sensing, big data technology for cardiovascular healthcare: current status and future prospective. Chinese Medical Journal 2023; vol. 136. Publisher: Chinese Medical Journals Publishing House Co., Ltd. 42 Dongsi Xidajie:1015–25. DOI: 10.1097/CM9.0000000000002117
- Mizuno A, Changolkar S and Patel MS. Wearable devices to monitor and reduce the risk of cardiovascular disease: evidence and opportunities. Annual review of medicine 2021; vol. 72. Publisher: Annual Reviews:459–71. DOI: 10.1146/annurev-med-050919-031534
- Hina A and Saadeh W. Noninvasive blood glucose monitoring systems using near-infrared technology—a review. Sensors 2022; 22:4855. DOI: 10.3390/s22134855
- Shokrekhodaei M, Cistola DP, Roberts RC and Quinones S. Non-invasive glucose monitoring using optical sensor and machine learning techniques for diabetes applications. IEEE Access 2021; 9:73029–45. DOI: 10.1109/ACCESS.2021.3079182
- Sanai F, Sahid AS, Huvanandana J, Spoa S, Boyle LH, Hribar J, Wang DTY, Kwan B, Colagiuri S, Cox SJ et al. Evaluation of a continuous blood glucose monitor: a novel and non-invasive wearable using bioimpedance technology. Journal of diabetes science and technology 2023; 17:336–44. DOI: 10.1177/19322968211054110
- McAuley SA, Dang TT, Horsburgh JC, Bansal A, Ward GM, Aroyan S, Jenkins AJ, MacIsaac RJ, Shah RV and O’Neal DN. Feasibility of an orthogonal redundant sensor incorporating optical plus redundant electrochemical glucose sensing. Journal of Diabetes Science and Technology 2016; 10:679–88. DOI: 10.1177/1932296816629982
- Saúde M da. Ministério da Saúde. Available from: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/diabetes
- Hina A and Saadeh W. A 186μW photoplethysmography-based noninvasive glucose sensing SoC. IEEE Sensors Journal 2022; 22:14185–95. DOI: 10.1109/JSEN.2022.3180893
- Allegri D, Donida A, Malcovati P and Barrettino D. CMOS-based multifrequency impedance analyzer for biomedical applications. IEEE transactions on biomedical circuits and systems 2018; 12:1301–12. DOI: 10.1109/ISCAS.2018.8351287
- Hesham R, Soltan A and Madian A. Energy harvesting schemes for wearable devices. AEU-International Journal of Electronics and Communications 2021; 138:153888. DOI: 10.1016/j.aeue.2021.153888
- Corbacho I, Carrillo JM, Ausín JL, Domínguez MÁ, Pérez-Aloe R and Duque-Carrillo JF. Wide-bandwidth electronically programmable CMOS instrumentation amplifier for bioimpedance spectroscopy. IEEE Access 2022; 10. Publisher: IEEE:95604–12. DOI: 10.1109/ACCESS.2022.3204868
- Abdolrazzaghi M, Katchinskiy N, Elezzabi AY, Light PE and Daneshmand M. Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator. IEEE Sensors Journal 2021; 21:18742–55. DOI: 10.1109/JSEN.2021.3090050
- Constantinou L, Bayford R and Demosthenous A. A wideband low-distortion CMOS current driver for tissue impedance analysis. IEEE Transactions on Circuits and Systems II: Express Briefs 2015; 62:154–8. DOI: 10.1109/TCSII.2014.2387632
- Pedro BG, Marcôndes DWC and Bertemes-Filho P. Analytical model for blood glucose detection using electrical impedance spectroscopy. Sensors 2020; 20:6928
- Pedro BG and Bertemes Filho P. Blood Glucose Detection Using 3-LEDs: Analytical Model. Revista Brasileira de Física Médica 2021; 15:613–3. DOI: 10.29384/rbfm.2021.v15.19849001613
- Teixeira LG and Bertemes-Filho P. Werable Device For Blood Glucose Level Analysis Using Electrical Bioimpedance and Near-Infrared: Preliminary Results. International Journal of Bioelectromagnetism 2022; 24
- EGluco. 2024. Available from: https://egluco.bio.br/
- Sirtoli V, Morcelles K, Gomez J and Bertemes-Filho P. Design and Evaluation of an Electrical Bioimpedance Device Based on DIBS for Myography during Isotonic Exercises. en. Journal of Low Power Electronics and Applications 2018 Dec; 8. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute:50. DOI: 10.3390/jlpea8040050
- Xu J, Harpe P and Van Hoof C. An Energy-Efficient and Reconfigurable Sensor IC for Bio-Impedance Spectroscopy and ECG Recording. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2018 Sep; 8. Conference Name: IEEE Journal on Emerging and Selected Topics in Circuits and Systems:616–26. DOI: 10.1109/JETCAS.2018.2834140
- Pliquett U, Schönfeldt M, Barthel A, Frense D, Nacke T and Beckmann D. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy. en. Physiological Measurement 2011 Jun. DOI: 10.1088/0967-3334/32/7/S15
- Tucker AS, Fox RM and Sadleir RJ. Biocompatible, High Precision, Wideband, Improved Howland Current Source With Lead-Lag Compensation. IEEE Transactions on Biomedical Circuits and Systems 2013 Feb; vol. 7:63– 70. DOI: 10.1109/TBCAS.2012.2199114
- Marcondes DWC, Bertemes-Filho P and Paterno AS. Current Oscillator Based on Pyragas Model for Electrical Bioimpedance Applications. en. Electronics 2022 Jan; vol. 11. Number: 17 Publisher: Multidisciplinary Digital Publishing Institute. DOI: 10.3390/electronics11172653
- Bertemes-Filho P. Tissue Characterisation using an Impedance Spectroscopy Probe. en. PhD thesis. University of Sheffield, 2002
- Bertemes-Filho P, Felipe A and Vincence VC. High Accurate Howland Current Source: Output Constraints Analysis. en. Circuits and Systems 2013; vol. 4:451–8. DOI: 10.4236/cs.2013.47059
- A Comprehensive Study of the Howland Current Pump. Texas Instruments. Available from: https://www.ti.com/lit/an/snoa474a/snoa474a.pdf
- Silva PD da and Bertemes Filho P. Switched CMOS current source compared to enhanced Howland circuit for bio-impedance applications. Journal of electrical bioimpedance 2024; 15:145–53. DOI: 10.2478/joeb-2024-0017