Have a personal or library account? Click to login
Effect of body orientation and joint movement on local bioimpedance measurements Cover

Effect of body orientation and joint movement on local bioimpedance measurements

Open Access
|Oct 2024

References

  1. Earthman C, Traughber D, Dobratz J and Howell W. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutrition in Clinical Practice 2007; 22:389–405. Available from: https://doi.org/10.1177/0115426507022004389
  2. Marra M, Sammarco R, De Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, Donini LM, Santarpia L, Cataldi M, Pasanisi F et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast media & molecular imaging 2019; 2019. DOI: 10.1155/2019/3548284
  3. Accardi AJ, Matsubara BS, Gaw RL, Daleiden-Burns A and Heywood JT. Clinical utility of fluid volume assessment in heart failure patients using bioimpedance spectroscopy. Frontiers in Cardiovascular Medicine 2021; 8:636718. DOI: 10.3389/fcvm.2021.636718. Available from: https://doi.org/10.3389/fcvm.2021.636718
  4. Khin EE, Elmaghrabi AY, Alvarado LA, Modem V and Quigley R. Fluid balance assessment in pediatric hemodialysis patients by using whole-body bioimpedance spectroscopy (WB-BIS). Pediatric Nephrology 2022; 37:2449–56. DOI: 10.1007/s00467-022-05469-6
  5. Röthlingshöfer L, Ulbrich M, Hahne S and Leonhardt S. Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. Journal of Electrical Bioimpedance 2011; 2:79–85. DOI: 10.5617/jeb.178
  6. Martinsen OG and Heiskanen A. Bioimpedance and bioelectricity basics. Elsevier, 2023
  7. Alsanie S, Lim S and Wootton SA. Detecting low-intake dehydration using bioelectrical impedance analysis in older adults in acute care settings: a systematic review. BMC geriatrics 2022; 22:954. DOI: 10.1186/s12877-022-03589-0
  8. Naranjo-Hernández D, Reina-Tosina J, Buendía R, Min M et al. Bioimpedance sensors: Instrumentation, models, and applications. 2019. Available from: https://doi.org/10.1155/2019/5078209
  9. Lindeboom L, Lee S, Wieringa F, Groenendaal W, Basile C, Sande F van der and Kooman J. On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease. Nephrology Dialysis Transplantation 2022; 37:2048–54. DOI: 10.1093/ndt/gfab025
  10. Schoutteten MK, Lindeboom L, De Cannière H, Pieters Z, Bruckers L, Brys AD, Van der Heijden P, De Moor B, Peeters J, Van Hoof C et al. The Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients. Sensors 2024; 24:1890. DOI: 10.3390/s24061890
  11. Więch P, Wołoszyn F, Trojnar P, Skórka M and Bazaliński D. Does body position influence bioelectrical impedance? An observational pilot study. International Journal of Environmental Research and Public Health 2022; 19:9908. DOI: 10.3390/ijerph19169908
  12. Zhu F, Schneditz D, Wang E and Levin NW. Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. Journal of applied physiology 1998; 85:497–504. DOI: 10.1152/jappl.1998.85.2.497
  13. Lee S, Squillace G, Smeets C, Vandecasteele M, Grieten L, De Francisco R and Van Hoof C. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2015:438–41. DOI: 10.1109/EMBC.2015.7318393
  14. Bora DJ and Dasgupta R. Estimation of skin impedance models with experimental data and a proposed model for human skin impedance. IET Systems Biology 2020; 14:230–40. DOI: 10.1049/iet-syb.2020.0049
  15. Li L, Li X, Hu H, Shin H and Zhou P. The effect of subcutaneous fat on electrical impedance myography: Electrode configuration and multi-frequency analyses. PLoS One 2016; 11:e0156154. DOI: 10.1371/journal.pone.0156154
  16. Sandby-Møller J, Poulsen T and Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta dermato-venereologica 2003; 83:410–3. DOI: 10.1080/00015550310015419
  17. Lintzeri D, Karimian N, Blume-Peytavi U and Kottner J. Epidermal thickness in healthy humans: a systematic review and meta-analysis. Journal of the European Academy of Dermatology and Venereology 2022; 36:1191–200. DOI: 10.1111/jdv.18123
  18. Chanda A and Singh G. Skin. Mechanical Properties of Human Tissues. Singapore: Springer Nature Singapore, 2023:13–23. DOI: 10.1007/978-981-99-2225-3_2. Available from: https://doi.org/10.1007/978-981-99-2225-3_2
  19. Baidillah MR, Riyanto R, Busono P, Karim S, Febryarto R, Astasari A, Sangaji D and Taruno WP. Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques. Measurement 2024:114111. DOI: 10.1016/j.measurement.2023.114111
  20. L. A. Fenton IH and Carr DJ. Skin and skin simulants. Australian Journal of Forensic Sciences 2020; 52:96–106. DOI: 10.1080/00450618.2018.1450896. eprint: https://doi.org/10.1080/00450618.2018.1450896. Available from: https://doi.org/10.1080/00450618.2018.1450896
  21. Chanda A and Singh G. Mechanical properties of human tissues. Springer, 2023
  22. Sung M, Spieker AJ, Narayanaswami P and Rutkove SB. The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance. Clinical Neurophysiology 2013; 124:400–4. DOI: 10.1016/j.clinph.2012.07.013
  23. Tarulli A, Chin A, Lee K and Rutkove S. Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: an initial assessment. Clinical neurophysiology 2007; 118:2393–7. DOI: 10.1016/j.clinph.2007.07.016
  24. Hamilton-James K, Collet TH, Pichard C, Genton L and Dupertuis YM. Precision and accuracy of bioelectrical impedance analysis devices in supine versus standing position with or without retractable handle in Caucasian subjects. Clinical Nutrition ESPEN 2021; 45:267–74. DOI: 10.1016/j.clnesp.2021.08.010
  25. Scharfetter H, Monif M, László Z, Lambauer T, Hutten H and Hinghofer-Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney international 1997; 51:1078–87. DOI: 10.1038/ki.1997.150
  26. Gibson A, Beam J, Alencar M, Zuhl M and Mermier C. Time course of supine and standing shifts in total body, intracellular and extracellular water for a sample of healthy adults. European journal of clinical nutrition 2015; 69:14–9. DOI: 10.1038/ejcn.2013.269
  27. Lawler JC, Davis MJ and Griffith EC. Electrical characteristics of the skin: The impedance of the surface sheath and deep tissues. Journal of Investigative Dermatology 1960; 34:301–8. DOI: 10.1038/jid.1960.52
Language: English
Page range: 137 - 144
Submitted on: Aug 20, 2024
Published on: Oct 5, 2024
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Sisay Mebre Abie, Alejandro Ortega de Román, Jie Hou, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.