Have a personal or library account? Click to login
Effects of temperature on electrical impedance of biological tissues: ex-vivo measurements Cover

Effects of temperature on electrical impedance of biological tissues: ex-vivo measurements

Open Access
|Sep 2024

References

  1. Martinsen OG, Heiskanen A. Bioimpedance and bioelectricity basics. 4th ed. Elsevier; 2023. https://doi.org/10.1016/B978-0-12-819107-1.00004-2
  2. Pethig R. Electrical properties of biological tissue. Modern Bioelectricity. CRC Press; 2020. p. 125-79.
  3. Foster KR, Schwan HP. Dielectric properties of tissues. CRC handbook of biological effects of electromagnetic fields. 2019:27-96.
  4. Gabriel C. Dielectric properties of biological materials. Bioengineering and Biophysical Aspects of Electromagnetic Fields. 3rd Ed. CRC Press, 2018:87-136. https://doi.org/10.1201/9781315221540-11
  5. Brown BH, Milnes P, Abdul S, Tidy JA. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG: An International Journal of Obstetrics & Gynaecology. 2005;112(6):802-6. https://doi.org/10.1111/j.1471-0528.2004.00530.x
  6. Jossinet J. The impedivity of freshly excised human breast tissue. Physiological measurement. 1998;19(1):61. https://doi.org/10.1088/0967-3334/19/1/006
  7. Salem SB, Ali SZ, Leo AJ, Lachiri Z, Mkandawire M. Early breast cancer detection and differentiation tool based on tissue impedance characteristics and machine learning. Frontiers in Artificial Intelligence. 2023;6. https://doi.org/10.3389/frai.2023.1248977
  8. Company-Se G, Nescolarde L, Pajares V, Torrego A, Riu PJ, Rosell J, et al. Minimally invasive lung tissue differentiation using electrical impedance spectroscopy: A comparison of the 3-and 4-electrode methods. IEEE access. 2021;10:7354-67. https://doi.org/10.1109/ACCESS.2021.3139223
  9. Tsampazis N, Vavoulidis E, Siarkou CM, Siarkou GM, Pratilas GC, Symeonidou M, et al. Diagnostic comparison of electrical impedance spectroscopy with colposcopy and HPV mRNA-testing in the prediction of CIN2+ women in Greece. Journal of Obstetrics and Gynaecology Research. 2023;49(4):1222-9. https://doi.org/10.1111/jog.15557
  10. Mansouri S, Alhadidi T, Ben Azouz M. Breast cancer detection using low-frequency bioimpedance device. Breast Cancer: Targets and Therapy. 2020:109-16. https://doi.org/10.2147/BCTT.S274421
  11. Hu S, Gao G, Hong Z, Liu C, Liu K, Yao J. An electrode array sensor for tongue cancer detection with bioelectrical impedance spectroscopic tomography. IEEE Sensors Journal. 2022;22(15):15146-53. https://doi.org/10.1109/JSEN.2022.3184342
  12. Bertemes-Filho P. Electrical bioimpedance based estimation of diabetics. Advanced Bioscience and Biosystems for Detection and Management of Diabetes: Springer; 2022. p. 181-97. https://doi.org/10.1007/978-3-030-99728-1_9
  13. Anand G, Yu Y, Lowe A, Kalra A. Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges. Physiological measurement. 2021;42(3):03TR1. https://doi.org/10.1088/1361-6579/abe80e
  14. Kim K, Jun M-H, Hong S, Kim S, Yu S, Kim JU. Effect of body posture on segmental multifrequency bioimpedance variables. Journal of Mechanics in Medicine and Biology. 2022;22(09):2240053. https://doi.org/10.1142/S021951942240053X
  15. Zhang Z, Li X, Tian J, Chen J, Gao G. A review: Application and research progress of bioimpedance in meat quality inspection. Journal of Food Process Engineering. 2022;45(11):e14153. https://doi.org/10.1111/jfpe.14153
  16. Osen DE, Abie SM, Martinsen ØG, Egelandsdal B, Münch D. Bioimpedance-based authentication of defrosted versus fresh pork at the end of refrigerated shelf life. Journal of Electrical Bioimpedance. 2022;13(1):125-31. https://doi.org/10.2478/joeb-2022-0017
  17. Sun Z, Liang L, Li J, Liu X, Sun J, Zou X, et al. Rapid detection of Atlantic salmon multi-quality based on impedance properties. Food Science & Nutrition. 2020;8(2):862-9. https://doi.org/10.1002/fsn3.1362
  18. Arteaga H, de Sousa Silva AC, de Campos Tambelli CE, Souto S, Costa EJX. Using pulsed magnetic fields to improve the quality of frozen blueberry: A bio-impedance approach. LWT. 2022;169:114039. https://doi.org/10.1016/j.lwt.2022.114039
  19. Neto AF, Olivier NC, Cordeiro ER, de Oliveira HP. Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture. 2017;143:222-6. https://doi.org/10.1016/j.compag.2017.10.018
  20. Soares C, Machado JT, Lopes AM, Vieira E, Delerue-Matos C. Electrochemical impedance spectroscopy characterization of beverages. Food chemistry. 2020;302:125345. https://doi.org/10.1016/j.foodchem.2019.125345
  21. Cornish B, Thomas B, Ward L. Effect of temperature and sweating on bioimpedance measurements. Applied Radiation and Isotopes. 1998;49(5-6):475-6. https://doi.org/10.1016/S0969-8043(97)00057-2
  22. Gersing E. Monitoring Temperature-Induced Changes in Tissue during Hyperthermia by Impedance Methods. Annals of the New York Academy of Sciences. 1999;873(1):13-20. https://doi.org/10.1111/j.1749-6632.1999.tb09444.x
  23. Islam N, Hale R, Taylor M, Wilson A. The possible use of combined electrical impedance and ultrasound velocity measurements for the non-invasive measurement of temperature during mild hyperthermia. Physiological Measurement. 2013;34(9):1103. https://doi.org/10.1088/0967-3334/34/9/1103
  24. Edd JF, Horowitz L, Rubinsky B. Temperature dependence of tissue impedivity in electrical impedance tomography of cryosurgery. IEEE transactions on biomedical engineering. 2005;52(4):695-701. https://doi.org/10.1109/TBME.2005.844042
  25. Jaspard F, Nadi M. Dielectric properties of blood: an investigation of temperature dependence. Physiological measurement. 2002;23(3):547 https://doi.org/10.1088/0967-3334/23/3/306
  26. Martinsen ØG, Grimnes S. The concept of transfer impedance in bioimpedance measurements. In 4th European Conference of the International Federation for Medical and Biological Engineering: IFMBE Proceedings, 2009; 22:1078-1079, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-89208-3_257
  27. Abie SM, Bergli J, Galperin Y, Martinsen ØG. Universality of AC conductance in human hair. Biomedical Physics & Engineering Express. 2016 Apr 7;2(2):027002. https://doi.org/10.1088/2057-1976/2/2/027002
  28. Buendia R, Gil-Pita R, Seoane F. Cole parameter estimation from the modulus of the electrical bioimpedance for assessment of body composition. A full spectroscopy approach. Journal of Electrical Bioimpedance. 2011;2(1):72-78. https://doi.org/10.5617/jeb.197
  29. Freeborn TJ, Fu B. Fatigue-induced Cole electrical impedance model changes of biceps tissue bioimpedance. Fractal and Fractional. 2018;2(4):27. https://doi.org/10.3390/fractalfract2040027
Language: English
Page range: 116 - 124
Submitted on: Jul 8, 2022
Published on: Sep 17, 2024
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Safia Aktar Dipa, Muralee Monohara Pramanik, Mamun Rabbani, Muhammad Abdul Kadir, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.