Have a personal or library account? Click to login
Exploring protocol development: Implementing systematic contextual memory to enhance real-time fMRI neurofeedback Cover

Exploring protocol development: Implementing systematic contextual memory to enhance real-time fMRI neurofeedback

Open Access
|May 2024

References

  1. Hongwei Wen et al. Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children. Pattern Recognition 2017; 63:601–11, doi: 10.1016/j.patcog.2016.09.039
  2. Ashley N. Nielsen et al. Atypical functional connectivity in Tourette Syndrome differs between children and adults. Biological Psychiatry 2020; 87(2):164–73, doi: 10.1016/j.biopsych.2019.06.021
  3. Clemens C.C. Bauer et al. Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: Part 2: Default mode network -preliminary evidence. Psychiatry Research 2020; 284:112770, doi: 10.1038/s41398-021-01201–4
  4. Adrian M. Owen et al. Detecting Awareness in the Vegetative State. Science 2006; 313(5792):1402, doi: 10.1126/science
  5. Michelle Hampson et al. Biofeedback of Real-Time Functional Magnetic Resonance Imaging Data from the Supplementary Motor Area Reduces Functional Connectivity to Subcortical Regions. Brain Connectivity 2011; 1(1):91–8, doi: 10.1089/brain.2011.0002
  6. Robert T. Thibault et al. The Psychology of Neurofeedback: Clinical Intervention Even if Applied Placebo. American Psychologist 2017; 72(7):679–88, doi: 10.1037/amp0000118
  7. Robert T. Thibault et al. Neurofeedback with fMRI: A critical systematic review. NeuroImage 2018; 172:786–807, doi: 10.1016/j.neuroimage.2017.12.071
  8. Gea Elena Spada et al. Heart Rate Variability Biofeedback in Cancer Patients: A Scoping Review. Behavioral Sciences 2022; 12, 389, doi: 10.3390/bs12100389
  9. Yoko Nagai et al. Galvanic Skin Response (GSR)/Electrodermal/Skin Conductance Biofeedback on Epilepsy: A Systematic Review and Meta-Analysis. Frontiers in Neurology 2019; 10, doi: 10.3389/fneur.2019.00377
  10. Sebastian Skalski et al. Effects of hemoencephalographic biofeedback with virtual reality on selected aspects of attention in children with ADHD. International Journal of Psychophysiology 2021; 170:59–66, doi: 10.1016/j.ijpsycho.2021.10.001
  11. Beth D Darnall et al. Self-Administered Skills-Based Virtual Reality Intervention for Chronic Pain: A Randomized Controlled Pilot Study. JMIR Form Res. 2020; 4(7):e17293, doi: 10.2196/17293
  12. David E. J. Linden et al. Real-Time Self-Regulation of Emotion Networks in Patients with Depression. PLoS One 2012; 7(6):e38115, doi: 10.1371/journal.pone.0038115
  13. V. C. Goessl et al. The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis. Psychological Medicine 2017; 47(15):2578–86, doi: 10.1017/S0033291717001003
  14. Yanli Zhang-James et al. Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis. Translational Psychiatry 2021; 11:82, doi: 10.1038/s41398-021-01201–4
  15. Ranganatha Sitaram et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 2017; 18(2):86–100, doi: 10.1038/nrn.2016.164
  16. Kana Okanoa et al. Real-time fMRI feedback impacts brain activation, results in auditory hallucinations reduction: Part 1: Superior temporal gyrus -Preliminary evidence-. Psychiatry Research 2020; 286:112862, doi: 10.1016/j.psychres.2020.112862
  17. Robert W. Cox et al. Real-Time Functional Magnetic Resonance Imaging. Magnetic Resonance Imaging 1995; 33(2):230–6, doi: 10.1002/mrm.1910330213
  18. Adrian M. Owen et al. Response to Comments on “Detecting Awareness in the Vegetative State”. Science 2007; 315(5816):1221–1, doi: 10.1126/science.11355
  19. Stephan F. Taylor & Meghan E. Martz. Real-time fMRI neurofeedback: the promising potential of brain-training technology to advance clinical neuroscience. Neuropsychopharmacology 2023; 48:238–9, doi: 10.1038/s41386-022-01397–z
  20. Anita Tursic et al. A systematic review of fMRI neurofeedback reporting and effects in clinical populations. NeuroImage: Clinical 2020; 28:102496, doi: 10.1016/j.nicl.2020.102496
  21. Emily Dudek & David Dodell-Feder. The efficacy of real-time functional magnetic resonance imaging neurofeedback for psychiatric illness: A meta-analysis of brain and behavioral outcomes. Neuroscience & Biobehavioral Reviews 2021; 121:291–306, doi: 10.1016/j.neubiorev.2020.12.020
  22. Amelie Haugg, Tomas Ros, Rene Huster et al. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 2020; 143, doi: 10.1093/brain/awaa009
  23. Samantha J Fede et al. A Guide to Literature Informed Decisions in the Design of Real Time fMRI Neurofeedback Studies: A Systematic Review. Front Hum Neurosci. 2020; 14, doi: 10.3389/fnhum.2020.00060
  24. Cassandra Sampaio-Baptista et al. Neurofeedback fMRI in the motor system elicits 1 bi-directional changes in 2 activity and white-matter structure in the healthy adult human brain. Cell Reports 2020; 37(4):109890, doi: 10.1016/j.celrep.2021.109890
  25. Anna Zilverstand et al. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study. PLoS One 2017; 12(1):e0170795, doi: 10.1371/journal.pone.0170795
  26. Yury Koush et al. OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis. Neuroimage 2017; 156:489–503, doi: doi: 10.1016/j.neuroimage.2017.06.039
  27. Grant Wallace et al. RT-Cloud: A cloud-based software framework to simplify and standardize real-time fMRI. NeuroImage 2022; 257:119295, doi: 10.1016/j.neuroimage.2022.119295
  28. D. Sukhodolsky et al. Randomized, sham-controlled trial of real-time fMRI neurofeedback for tics in adolescents with Tourette Syndrome. Biological Psychiatry 2019; 87(12):1063–70, doi: 10.1016/j.biopsych.2019.07.035
  29. Anna Zilverstand et al. fMRI neurofeedback facilitates anxiety regulation in females with spider phobia. Frontiers in Behavioral Neuroscience 2015; 9, doi: 10.3389/fnbeh.2015.00148
  30. Silvy H.P. Collin, Christian F. Doeller et al. Inducing a mental context for associative memory formation with realtime fMRI neurofeedback. Scientific Reports 2022; 12:21226, doi: 10.1038/s41598-022-25799–7
  31. Sheut-Ling Lam et al. Double-blind, sham-controlled randomized trial testing the efficacy of fMRI neurofeedback on clinical and cognitive measures in children with ADHD. American Journal of Psychiatry 2022; 179 (12):947–58, doi: 10.1176/appi.ajp.21100999
  32. Analucia A. Alegria et al. Real-Time fMRI Neurofeed-back in Adolescents with Attention Deficit Hyperactivity Disorder. Human Brain Mapping 2017; 38(6):3190–209, doi: 10.1002/hbm.23584
  33. Seyhmus Guler et al. Matched neurofeedback during fMRI differentially activates reward-related circuits in active and sham groups. Journal of Neuroimaging 2021; 31(5):947–55, doi: 10.1111/jon.12899
  34. Fukuda Megumi et al. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network. Front. Hum. Neurosci. 2015; 9(160), doi: 10.3389/fn-hum.2015.00160
  35. Zhiying Zhao et al. Real-time functional connectivity-based neurofeedback of amygdala-frontal pathways reduces anxiety. Psychotherapy and Psychosomatics 2019; 88(1):5–15, doi: 10.1159/000496057
  36. Gustavo S P Pamplona et al. Network-based fMRI-neurofeedback training of sustained attention. NeuroImage 2020; 221:117194, doi: 10.1016/j.neuroimage.2020.117194
  37. Mariela Rance et al. Time course of clinical change following neurofeedback. Neuroimage 2018; 181:807–13, doi: 10.1016/j.neuroimage.2018.05.001
  38. Fabien Robineau et al. Maintenance of Voluntary Self-regulation Learned through Real-Time fMRI Neurofeedback. Front. Hum. Neurosci. 2017; 11(131), doi: 10.3389/fnhum.2017.00131
  39. Cassandra Sampaio-Baptista et al. White Matter Plasticity in the Adult Brain. Neuron 2017; 96(6):1239–51, doi: 10.1016/j.neuron.2017.11.026
  40. Cassandra Sampaio-Baptista et al. fMRI neurofeedback in the motor system elicits bidirectional changes in activity and in white matter structure in the adult human brain. Cell reports 2021; 37(4):109890, doi: 10.1016/j.celrep.2021.109890
  41. Vincent Taschereau-Dumouchel et al. Real-Time Functional MRI in the Treatment of Mental Health Disorders. Annual Review of Clinical Psychology 2022; 18:125–54, doi: 10.1146/annurev-clinpsy-072220–014550
  42. Ikko Kimura et al. Efficacy of neurofeedback training for improving attentional performance in healthy adults: A systematic review and meta-analysis. Imaging Neuroscience 2024; 2:1–23, doi: 10.1162/imag_a_00053
  43. Ryoji Onagawa et al. An investigation of the effectiveness of neurofeedback training on motor performance in healthy adults: A systematic review and meta-analysis. NeuroImage 2023; 270:120000, doi: 10.1016/j.neuroimage.2023.120000
  44. Mohammed Gamil Mohammed Saif, et al. Clinical efficacy of neurofeedback protocols in treatment of Attention Deficit/Hyperactivity Disorder (ADHD): A systematic review. Psychiatry Research: Neuroimaging 2023; 335:111723, doi: 10.1016/j.pscychresns.2023.111723
  45. Richard K.J. Brown et al. Virtual Reality Tool Simulates MRI Experience. Tomography 2018; 4(3):95–8, doi: 10.18383/j.tom.2018.00023
  46. Stefan Liszio et al. Pengunaut trainer: a playful VR app to prepare children for MRI examinations: in-depth game design analysis. conference: IDC 2020 :470–82, doi: 10.1145/3392063.3394432
  47. Stefan Liszio et al. A Universe Inside the MRI Scanner: An In-Bore Virtual Reality Game for Children to Reduce Anxiety and Stress. conference: Chi Play 2020 :46–57, doi: 10.1145/3410404.3414263
  48. Rahul Goel et al. Framework for Accurate Classification of Self-Reported Stress From Multisession Functional MRI Data of Veterans With Posttraumatic Stress. Chronic Stress 2023; 7:24705470231203655, doi: 10.1177/24705470231203655
  49. Muhammad Arifur Rahman et al. Enhancing biofeedback-driven self-guided virtual reality exposure therapy through arousal detection from multimodal data using machine learning. Brain Informatics 2023; 10(14), doi: 10.1186/s40708-023-00193-9
  50. Jasmine I. Kerr et al. The effectiveness and user experience of a biofeedback intervention program for stress management supported by virtual reality and mobile technology: a randomized controlled study. BMC Digital Health 2023; 1:42, doi: 10.1186/s44247-023-00042–z
  51. Christopher Lee Friesen et al. Home-based portable fNIRS-derived cortical laterality correlates with impairment and function in chronic stroke. Frontiers in Human Neuroscience 2023; 16, doi: 10.3389/fn-hum.2022.1023246
  52. Daniel David et al. Why Cognitive Behavioral Therapy Is the Current Gold Standard of Psychotherapy. Frontiers in Psychiatry 2018; 9(4), doi: 10.3389/fpsyt.2018.00004
  53. Heledd Hart et al. Meta-analysis of Functional Magnetic Resonance Imaging Studies of Inhibition and Attention in Attention-deficit/Hyperactivity Disorder. JAMA Psychiatry 2013; 70(2):185–98, doi: 10.1001/jamapsychiatry.2013.277
  54. Katya Rubia et al. Effects of Stimulants on Brain Function in Attention-Deficit/Hyperactivity Disorder; A Systematic Review and Meta-Analysis. Biol. Psychiatry 2014; 76(8):616–28, doi: 10.1016/j.biopsych.2013.10.016
  55. Charlotte L. Rae et al. A Bayesian Account of the Sensory-Motor Interactions Underlying Symptoms of Tourette Syndrome. Frontiers in Psychiatry 2019; 10(29), doi: 10.3389/fpsyt.2019.00029
  56. Nicole HL. Tourette’s syndrome: The role of attention and inhibitory mechanisms in the generation and management of tics. University College London 2020; PhD(thesis)
  57. Westwood SJ et al. Transcranial direct current stimulation (tDCS) combined with cognitive training in adolescent boys with ADHD: a double-blind, randomised, sham-controlled trial. Psychological Medicine 2023; 53(2):497–512, doi: 10.1017/S0033291721001859
  58. Kari Paulsrud et al. Tjenester til personer med autismespekterforstyrrelser og til personer med Tourettes syndrom. Helse- og omsorgsdepartementet 2020; 1(1)
  59. Melina Aikaterini Malli et al. “Tourette’s Is a Lonely Place”: an Interpretative Phenomenological Analysis of the Personal Experience and Identity of Adults with Tourette’s Syndrome. Journal of Developmental and Physical Disabilities 2019; 31:819–45, doi: 10.1007/s10882-019-09676–2
  60. Pål Surén et al. Tourettes syndrom hos barn i Norge. Tidsskr Nor Legeforen 2019; 139, doi: 10.4045/tidsskr.19.0411
  61. Renata Rizzo et al. A Randomized Controlled Trial Comparing Behavioral, Educational, and Pharmacological Treatments in Youths With Chronic Tic Disorder or Tourette Syndrome. Frontiers in Psychiatry 2018; 9(100), doi: 10.3389/fpsyt.2018.00100
  62. Michal Novotny et al. Tourette Syndrome: A Mini-Review. Frontiers in Neurology 2018; 9, doi: 10.3389/fneur.2018.00139
  63. Nissen JB et al. Combined habit reversal training and exposure response prevention in a group setting compared to individual training: a randomized controlled clinical trial. Eur Child Adolesc Psychiatry. 2019; 28(1):57–68, doi: 10.1007/s00787-018-1187–z
  64. Sabine Wilhelm et al. Habit Reversal Versus Supportive Psychotherapy for Tourette’s Disorder: A Randomized Controlled Trial. The American Journal of Psychiatry 2003; 160(6):1175–7, doi: 10.1176/appi.ajp.160.6.1175
  65. Per Andrén et al. Therapist-guided and parent-guided internet-delivered behaviour therapy for paediatric Tourette’s disorder: a pilot randomised controlled trial with longterm follow-up. BMJ Open 2019; 9(2):e024685, doi: 10.1136/bmjopen-2018–024685
  66. Douglas W. Woods et al. Tourettes Syndrom Ticskontrollerende trening. Manual for behandlere. Oxford University Press, 2008
  67. Chad T Wetterneck et al. An Evaluation of the Effectiveness of Exposure and Response Prevention on Repetitive Behaviors Associated with Tourette’s Syndrome. J Appl Behav Anal. 2006; 39(4):441–4, doi: 10.1901/jaba.2006.149–03
  68. Denis G. Sukhodolsky et al. Moderators and predictors of response to behavior therapy for tics in Tourette syndrome. Neurology 2017; 88(11):1029–36, doi: 10.1212/WNL.0000000000003710
  69. Rowshanak Hashemiyoon et al. Putting the Pieces Together in Gilles de la Tourette Syndrome: Exploring the Link Between Clinical Observations and the Biological Basis of Dysfunction. Brain Topography 2017; 30(1):3–29, doi: 10.1007/s10548-016-0525–z
  70. Todd M. Herrington et al. Mechanisms of deep brain stimulation. J Neurophysiology 2015; 115(1):19–38, doi: 10.1152/jn.00281.2015
  71. Nandakumar S. Narayanan et al. The Fastest Way to Stop: Inhibitory Control and IFG-STN Hyperdirect Connectivity. Neuron 2020; 106(4):549–51, doi: 10.1016/j.neuron.2020.04.017
  72. Andrea E. Cavanna et al. Tourette Syndrome and Consciousness of Action. Tremor Other Hyperkinet Mov 2013; 3:tre-03-181-4368–1, doi: 10.7916/D8PV6J33
  73. Irene Neuner et al. Imaging the where and when of tic generation and resting state networks in adult Tourette patients. Frontiers in Human Neuroscience 2014; 8(362), doi: 10.3389/fnhum.2014.00362
  74. Norman L. J. et al. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder: A Comparative Meta-analysis. JAMA Psychiatry. 2016; 73(8):815–25, doi: 10.1001/jamapsychiatry.2016.0700
  75. Witney Chen et al. Prefrontal-Subthalamic Hyperdirect Pathway Modulates Movement Inhibition in Humans. Neuron 2020; 106(4):579–88, doi: 10.1016/j.neuron.2020.02.012
  76. Rune Boen et al. Inhibitory Control and the Structural Parcelation of the Right Inferior Frontal Gyrus. Frontiers in Human Neuroscience 2022; 16, doi: 10.3389/fn-hum.2022.787079
  77. Eric Krokos et al. Virtual memory palaces: immersion aids recall. Virtual Reality 2018; 23:1–15, doi: 10.1007/s10055-018-0346–3
  78. Yeon Soon Shin et al. Context-dependent memory effects in two immersive virtual reality environments: On Mars and underwater. Psychonomic Bulletin & Review 2020; 28(12):574–82, doi: 10.3758/s13423-020-01835–3
  79. Stavros Skouras et al. Earliest amyloid and tau deposition modulate the influence of limbic networks during closed-loop hippocampal downregulation. Brain 2020; 143(3):976–92, doi: 10.1093/brain/awaa011
  80. Megan T. deBettencourt et al. Neurofeedback helps to reveal a relationship between context reinstatement and memory retrieval. Neuroimage 2019; 200:292–301, doi: 10.1016/j.neuroimage.2019.06.001
  81. Martine Hoogman et al. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure. Human Brain Mapping 2020; 43(1):37–55, doi: 10.1002/hbm.25029
  82. Hyun-Chul Kim et al. Mediation analysis of triple networks revealed functional feature of mindfulness from real-time fMRI neurofeedback. NeuroImage 2019; 195:409–32, doi: 10.1016/j.neuroimage.2019.03.066
  83. Pradyumna Sepulveda et al. How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI. Hum Brain Mapp. 2016; 37(9):3153–71, doi: 10.1002/hbm.23228
  84. Amelie Haugg et al. Predictors of real-time fMRI neurofeedback performance and improvement - A machine learning mega-analysis. Neuroimage 2021; 237:118207, doi: 10.1016/j.neuroimage.2021.118207
  85. Kathrin Cohen Kadosh & Graham Staunton. A systematic review of the psychological factors that influence neurofeedback learning outcomes. Neuroimage 2019; 185:545–55, doi: 10.1016/j.neuroimage.2018.10.021
  86. John Ashburner et al. PRoNTo Manual. Machine Learning & Neuroimaging Laboratory 2018; Computer Science Department:UCL
  87. J.Sugar, May-Britt Moser. Episodic memory: Neuronal codes for what, where, and when. Hippocampus 2019; 29(12):1190–205, doi: 10.1002/hipo.23132
  88. Henrica M. A. de Bie et al. Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. European Journal of Pediatrics 2010; 169(9):1079–85, doi: 10.1007/s00431-010-1181–z
  89. Dulce Romero-Ayuso et al. Effectiveness of Virtual Reality-Based Interventions for Children and Adolescents with ADHD: A Systematic Review and Meta-Analysis. Children 2021; 8(2):70, doi: 10.3390/children8020070’
  90. Dongha Lee et al. Neurofeedback learning for mental practice rather than repetitive practice improves neural pattern consistency and functional network efficiency in the subsequent mental motor execution. Neuroimage 2019; 188:680–93, doi: 10.1016/j.neuroimage.2018.12.055
  91. Yury Koush et al. Real-time fMRI data for testing Open-NFT functionality. Neuroimage 2017; 156:489–503, doi: 10.1016/j.dib.2017.07.049
  92. Franziska Weiss et al. Using mind control to modify cue-reactivity in AUD: the impact of mindfulness-based relapse prevention on real-time fMRI neurofeedback to modify cue-reactivity in alcohol use disorder: a randomized controlled trial. BCM Psychiatry 2020; 20(1):309, doi: 10.1186/s12888-020-02717–7
  93. Xin Di & Bharat B. Biswal. A functional MRI pre-processing and quality control protocol based on statistical parametric mapping (SPM) and MATLAB. Frontiers in Neuroimaging 2023; 1, doi:10.3389/fnimg.2022.1070151
  94. Paul A. Yushkevich et al. ITK-SNAP. 2020. Available from: http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
  95. NITRC. MRICron. 2019
  96. NITRC. WFU Pickatlas. 2020. Available from: https://www.nitrc.org/projects/wfu_pickatlas/
  97. Katya Rubia et al. Functional connectivity changes associated with fMRI neurofeedback of right inferior frontal cortex in adolescents with ADHD. NeuroImage 2019; 188:43–58, doi: 10.1016/j.neuroimage.2018.11.055
  98. Katrin Amunts et al. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 2020; 369(6506):988–92, doi: 10.1126/science.abb4588
  99. Salim Al-Wasity et al. Upregulation of Supplementary Motor Area Activation with fMRI Neurofeedback during Motor Imagery. eNeuro 2021; 8(1), doi: 10.1523/ENEURO.0377-18.2020
  100. Mats Fredriksen, et al. Long-term Pharmacotherapy of Adults with Attention-Deficit Hyperactivity Disorder (ADHD): A Literature Review and Clinical Study. Basic & Clinical Pharmacology & Toxicology 2015; 118(1):23–31, doi: 10.1111/bcpt.12477.
  101. Mats Fredriksen et al. Pharmacological Treatment of Adult Attention-Deficit/Hyperactivity Disorder (ADHD) in a Longitudinal Observational Study: Estimated Treatment Effect Strengthened by Improved Covariate Balance. Open Journal of Statistics 2017; 7:988–1012, doi: 10.4236/ojs.2017.76070
  102. EBRAINS. Probabilistic Brain Atlas. 2023. Available from: https://julich-brain-atlas.de/atlas/probabilistic-maps [Accessed on: 2023 Jan 24]
  103. David M. A. Mehler et al. Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study. Front. Hum. Neurosci. 2020; 14:226, doi: 10.3389/fnhum.2020.00226
  104. Aurelio Cortese et al. The DecNef collection, fMRI data from closed-loop decoded neurofeedback experiments. Scientific Data 2021; 8(65), doi: 10.1038/s41597-021-00845-7
  105. Lab G. Acquiring DICOM images in real-time. 2019. Available from: https://gallantlab.github.io/realtimefmri/scanning/network.html
  106. Susan Whitfield-Gabrieli & Alfonso Nieto-Castanon. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity 2012; 2(3):125–41, doi: 10.1089/brain.2012.0073
  107. Nieto-Castanon A. Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. 2020 Feb
  108. J. Schrouff et al. PRoNTo: Pattern Recognition for Neuroimaging Toolbox. Neuroinformatics 2013; 11:319–37, doi: 10.1007/s12021-013-9178–1
  109. Epifanio Bagarinao et al. Improving Real-Time Brain State Classification of Motor Imagery Tasks During Neurofeedback Training. Frontiers in Neuroscience 2020; 14, doi:10.3389/fnins.2020.00623
  110. Nikita Davydov et al. Real-time and Recursive Estimators for Functional MRI Quality Assessment. Neuroinformatics 2022; 20(4):897–917, doi: 10.1007/s12021-022-09582–7
  111. Meryem A. Yücel et al. Functional Near Infrared Spectroscopy: Enabling routine functional brain imaging. Current Opinion in Biomedical Enfineering 2017; 4: 78-86, doi: 10.1016/j.cobme.2017.09.011
  112. Oshin Tyagi et al. Neural Signatures of Handgrip Fatigue in Type 1 Diabetic Men and Women. Frontiers in Human Neuroscience 2020; 14, doi:10.3389/fnhum.2020.564969
  113. João Pereira et al. Multimodal assessment of the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor tasks. Scientific Reports 2023; 13:2244, doi: 10.1038/s41598-023-29123-9
  114. Franziska Klein et al. fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery. Scientific Reports 2022; 12:3570, doi: 10.1038/s41598-022-06519-7
  115. Charlotte Piau et al. Cortical hemodynamic mechanisms of reversal learning using high-resolution functional near-infrared spectroscopy: A pilot study. Neurophysiologie Clinique 2021; 51(5):409–24, doi: 10.1016/j.neucli.2021.08.001
  116. Jake D. Rieke et al. Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke. Journal of Neuroscience Methods 2020; 341:108719, doi: 10.1016/j.jneumeth.2020.108719
  117. Avi K. Matarasso et al. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study. PLos One 2021; 16(5):e0250431, doi: 10.1371/journal.pone.0250431
  118. Wen-Jun Wu et al. A parallel-group study of near-infrared spectroscopy-neurofeedback in children with attention deficit hyperactivity disorder. Psychiatry Research 2022; 309:114364, doi: 10.1016/j.psychres.2021.114364
  119. Douglas Teixeira Leffa et al. Transcranial Direct Current Stimulation vs Sham for the Treatment of Inattention in Adults With Attention-Deficit/Hyperactivity Disorder: The TUNED Randomized Clinical Trial. JAMA Psychiatry 2022; 79(9):847–56, doi:10.1001/jamapsychiatry.2022.2055
  120. Sherwood M. S. et al. A Protocol for the Administration of Real-Time fMRI Neurofeedback Training. J Vis Exp. 2017; 126:55543, doi: 10.3791/55543
Language: English
Page range: 41 - 62
Submitted on: Feb 10, 2024
Published on: May 31, 2024
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Steffen Maude Fagerland, Henrik Røsholm Berntsen, Mats Fredriksen, Tor Endestad, Stavros Skouras, Mona Elisabeth Rootwelt-Revheim, Ragnhild Marie Undseth, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.