Have a personal or library account? Click to login
Advancing biomedical engineering: Leveraging Hjorth features for electroencephalography signal analysis Cover

Advancing biomedical engineering: Leveraging Hjorth features for electroencephalography signal analysis

Open Access
|Dec 2023

References

  1. Yang Y, Jiao P (2023) Nanomaterials and nanotechnology for biomedical soft robots. Mater Today Adv 17:100338. https://doi.org/10.1016/j.mtadv.2022.100338
  2. Aarya Sree K, Yagnik A, Chordiya PK, Choudhury K, Kumar P (2023) Nature-inspired vascularised materials and devices for biomedical engineering. Curr Opin Biomed Eng 25:100444 https://doi.org/10.1016/j.cobme.2022.100444.
  3. Arabzadeh N, Bagheri E (2023) A self-supervised language model selection strategy for biomedical question answering. J Biomed Inform 146:104486.https://doi.org/10.1016/j.jbi.2023.104486
  4. Chang C, Chen JE (2021) Multimodal EEG-fMRI: Advancing insight into large-scale human brain dynamics. Curr Opin Biomed Eng 18:100279. https://doi.org/10.1016/j.cobme.2021.100279
  5. Choo S, Park H, Kim S, Park D, Jung J-Y, Lee S, Nam CS (2023) Effectiveness of multi-task deep learning framework for EEGbased emotion and context recognition. Expert Syst Appl 227:120348. https://doi.org/10.1016/j.eswa.2023.120348
  6. Duan Y, Wang Z, Li Y, Tang J, Wang Y-K, Lin C-T (2023) Cross task neural architecture search for EEG signal recognition. Neurocomputing 545:126260. https://doi.org/10.1016/j.neucom.2023.126260
  7. Maher A, Mian Qaisar S, Salankar N, Jiang F, Tadeusiewicz R, Pławiak P, Abd El-Latif AA, Hammad M (2023) Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning. Biocybern Biomed Eng 43:463-475.https://doi.org/10.1016/j.bbe.2023.05.001
  8. Kansal S, Garg D, Upadhyay A, Mittal S, Talwar GS (2023) DL-AMPUT-EEG: Design and development of the low-cost prosthesis for rehabilitation of upper limb amputees using deep-learning-based techniques. Eng Appl Artif Intell 126:106990. https://doi.org/10.1016/j.engappai.2023.106990
  9. Suhaimi NS, Mountstephens J, Teo J (2022) A Dataset for Emotion Recognition Using Virtual Reality and EEG (DER-VREEG): Emotional State Classification Using Low-Cost Wearable VR-EEG Headsets. Big Data and Cognitive Computing. https://doi.org/10.3390/bdcc6010016
  10. Shekhar S, Eswaran D, Hooi B, Elmer J, Faloutsos C, Akoglu L (2023) Benefit-aware early prediction of health outcomes on multivariate EEG time series. J Biomed Inform 139:104296. https://doi.org/10.1016/j.jbi.2023.104296
  11. Jiang H, Shen F, Chen L, Peng Y, Guo H, Gao H (2023) Joint domain symmetry and predictive balance for cross-dataset EEG emotion recognition. J Neurosci Methods 400:109978. https://doi.org/10.1016/j.jneumeth.2023.109978
  12. Asanza V, Montoya D, Lorente-Leyva LL, Peluffo-Ordóñez DH, González K (2023) MILimbEEG: An EEG Signals Dataset based on Upper and Lower Limb Task During the Execution of Motor and Motorimagery Tasks. Data in Brief 50:109540. https://doi.org/10.17632/x8psbz3f6x.2
  13. Asanza V, Lorente-Leyva LL, Peluffo-Ordóñez DH, Montoya D, Gonzalez K (2023) MILimbEEG: A dataset of EEG signals related to upper and lower limb execution of motor and motor imagery tasks. Data Brief 50:109540. https://doi.org/10.1016/j.dib.2023.109540
  14. Coelho BFO, Massaranduba ABR, dos Santos Souza CA, Viana GG, Brys I, Ramos RP (2023) Parkinson’s disease effective biomarkers based on Hjorth features improved by machine learning. Expert Syst Appl 212:118772. https://doi.org/10.1016/j.eswa.2022.118772
  15. Kara Gulay B, Demirel N, Vahaplar A, Guducu C (2023) A novel feature extraction method using chemosensory EEG for Parkinson’s disease classification. Biomed Signal Process Control 79:104147. https://doi.org/10.1016/j.bspc.2022.104147
  16. Mehmood RM, Bilal M, Vimal S, Lee S-W (2022) EEG-based affective state recognition from human brain signals by using Hjorth-activity. Measurement 202:111738. https://doi.org/10.1016/j.measurement.2022.111738
  17. Al-Haddad LA, Jaber AA (2023) Improved UAV blade unbalance prediction based on machine learning and ReliefF supreme feature ranking method. Journal of the Brazilian Society of Mechanical Sciences and Engineering 45:463. https://doi.org/10.1007/s40430-023-04386-5
  18. Chow JC, Ouyang C-S, Chiang C-T, Yang R-C, Wu R-C, Wu H-C, Lin L-C (2019) Novel method using Hjorth mobility analysis for diagnosing attention-deficit hyperactivity disorder in girls. Brain Dev 41:334-340. https://doi.org/10.1016/j.braindev.2018.11.006
  19. Yu M, Chen W, Lu Y (2022) Fault diagnosis and location identification of rotor-stator rub-impact based on Hjorth parameters. Eng Fail Anal 138:106299. https://doi.org/10.1016/j.engfailanal.2022.106299
  20. Al-Haddad LA, Jaber AA (2023) An Intelligent Fault Diagnosis Approach for Multirotor UAVs Based on Deep Neural Network of Multi-Resolution Transform Features. Drones 7:82. https://doi.org/10.3390/drones7020082
  21. Mehmood F, Ahmad S, Whangbo TK (2023) An Efficient Optimization Technique for Training Deep Neural Networks. Mathematics. https://doi.org/10.3390/math11061360. https://doi.org/10.3390/math11061360
  22. Al-Haddad LA, Jaber AA, Al-Haddad SA, Al-Muslim YM (2023) Fault diagnosis of actuator damage in UAVs using embedded recorded data and stacked machine learning models. J Supercomput. https://doi.org/10.1007/s11227-023-05584-7
  23. Labidi T, Sakhrawi Z (2023) On the value of parameter tuning in stacking ensemble model for software regression test effort estimation. J Supercomput. https://doi.org/10.1007/s11227-023-05334-9
  24. Al-Haddad LA, Jaber AA (2022) An Intelligent Quadcopter Unbalance Classification Method Based on Stochastic Gradient Descent Logistic Regression. In: 2022 3rd Information Technology to Enhance e-learning and Other Application (IT-ELA). pp 152-156. https://doi.org/10.1109/IT-ELA57378.2022.10107922
  25. Yuan W, Hu F, Lu L (2022) A new non-adaptive optimization method: Stochastic gradient descent with momentum and difference. Applied Intelligence 52:3939-3953 National Institute of Health [Internet]. https://doi.org/10.1007/s10489-021-02224-6
  26. Ruiz de Miras J, Ibáñez-Molina AJ, Soriano MF, Iglesias-Parro S (2023) Schizophrenia classification using machine learning on resting state EEG signal. Biomed Signal Process Control 79:104233. https://doi.org/10.1016/j.bspc.2022.104233
  27. Safi MS, Safi SMM (2021) Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters. Biomed Signal Process Control 65:102338. https://doi.org/10.1016/j.bspc.2020.102338
Language: English
Page range: 66 - 72
Submitted on: Nov 14, 2023
Published on: Dec 31, 2023
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Wissam H. Alawee, Ali Basem, Luttfi A. Al-Haddad, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.