Have a personal or library account? Click to login
Improved estimation of left ventricular volume from electric field modeling Cover

Improved estimation of left ventricular volume from electric field modeling

Open Access
|Dec 2021

References

  1. Sieweke JT, Berliner D, Tongers J, Napp LC, Flierl U, Zauner F, Bauersachs J, and Schäfer A. Mortality in patients with cardiogenic shock treated with the Impella CP microaxial pump for isolated left ventricular failure. European Heart Journal: Acute Cardiovascular Care 2018, 9.138–48, htt:.//dx,doi,org/10,1177/2048872618757393
  2. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado III RM, Long JW, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. New England Journal of Medicine 2009, 361.2241–51, 10.1056/NEJMoa0909938
  3. Wilson SR, Mudge Jr GH, Stewart GC, and Givertz MM. Evaluation for a ventricular assist device: selecting the appropriate candidate. Circulation 2009, 119.2225–32, 10.1161/CIRCULATIONAHA.109.850610
  4. Chong MA, Wang Y, Berbenetz NM, and McConachie I. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: a systematic review and meta-analysis. European Journal of Anaesthesiology (EJA) 2018, 35.469–83, 10, 1097/EJA.0000000000000778
  5. Stephens RS and Whitman GJR. Postoperative critical care of the adult cardiac surgical patient. Part I: routine postoperative care. Critical Care Medicine 2015, 43.1477–97, 10.1097/CCM.0000000000001059
  6. Rüschen D, Opitz S, Platen P von, Korn L, Leon-hardt S, and Walter M. Robust physiological control of rotary blood pumps for heart failure therapy. at-Automatisierungstechnik 2018, 66.767–79, 10.1515/auto-2018-0014
  7. Wu EL, Stevens MC, Nestler F, Pauls JP, Bradley AP, Tansley G, Fraser JF, and Gregory SD. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation. Artificial organs 2020, 44.40–53, 10.1111/aor.13570
  8. Colacino FM, Moscato F, Piedimonte F, Arabia M, and Danieli GA. Left ventricle load impedance control by apical VAD can help heart recovery and patient perfusion: a numerical study. Asaio Journal 2007, 53.263–77, 10.1097/MAT.0b013e31805b7e39
  9. Petrou A, Lee J, Dual S, Ochsner G, Meboldt M, and Schmid Daners M. Standardized comparison of selected physiological controllers for rotary blood pumps: in vitro study. Artificial organs 2018, 42.29–42, 10.1111/aor.12999
  10. Arndt A, Nüsser P, and Lampe B. Fully autonomous preload-sensitive control of implantable rotary blood pumps. Artificial organs 2010, 34.726–35, 10.1111/j.1525-1594.2010.01092.x
  11. AlOmari AH, Savkin AV, Stevens M, Mason DG, Timms DL, Salamonsen RF, and Lovell NH. Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review. Physiological Measurement 2012, 34.R1, 10.1088/0967-3334/34/1/R1
  12. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, Strickland W, Neelagaru S, Raval N, Krueger S, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. The Lancet 2011, 377.658–66, 10.1016/S0140-6736(11)60101-3
  13. Ochsner G, Wilhelm MJ, Amacher R, Petrou A, Cesarovic N, Staufert S, Röhrnbauer B, Maisano F, Hierold C, Meboldt M, et al. In vivo evaluation of physiologic control algorithms for left ventricular assist devices based on left ventricular volume or pressure. ASAIO Journal 2017, 63.568–77, 10.1097/MAT.0000000000000533
  14. Cysyk J, Newswanger R, Popjes E, Pae W, Jhun CS, Izer J, Weiss W, and Rosenberg G. Cannula tip with integrated volume sensor for rotary blood pump control: early-stage development. ASAIO Journal 2019, 65.318–23, http .//dx , doi , org/10 , 1097/MAT , 0000000000000818
  15. Schmid Daners M and Dual SA. Pathophysiological Determinants Relevant in Blood Pump Control. Mechanical Support for Heart Failure, Springer, 2020 .253–77, 10.1007/978-3-030-47809-4_18
  16. Dual SA, Zimmermann JM, Neuenschwander J, Cohrs NH, Solowjowa N, Stark WJ, Meboldt M, and Schmid Daners M. Ultrasonic sensor concept to fit a ventricular assist device cannula evaluated using geometrically accurate heart phantoms. Artificial Organs 2019, 43.467–77, 10.1111/aor.13379
  17. Wei CL, Valvano JW, Feldman MD, and Pearce JA. Nonlinear conductance-volume relationship for murine conductance catheter measurement system. IEEE Transactions on Biomedical Engineering 2005, 52.1654–61, 10.1109/TBME.2005.856029
  18. Baan J, Jong TTA, Kerkhof PL, Moene RJ, Van Dijk AD, Der Velde ET van, and Koops J. Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovascular Research 1981, 15.328–34, 10.1093/cvr/15.6.328
  19. Baan J, Van Der Velde ET, De Bruin HG, Smeenk GJ, Koops J, Van Dijk AD, Temmerman D, Senden J, and Buis B. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 1984, 70.812–23, 10.1161/01.CIR.70.5.812
  20. Helmholtz Hv. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik und Chemie 1853, 89.353–77, http://dx.doi.org/10.1002/andp.18531650603
  21. Salo RW, Wallner TG, and Pederson BD. Measurement of Ventricular Volume by Intracardiac Impedance: Theoretical and Empirical Approaches. IEEE Transactions on Biomedical Engineering 1986, 2.189–95, 10.1109/TBME.1986.325890
  22. Wu CC, Skalak TC, Schwenk TR, Mahler CM, Anne A, Finnerty PW, Haber HL, Weikle RM, and Feldman MD. Accuracy of the conductance catheter for measurement of ventricular volumes seen clinically: effects of electric field homogeneity and parallel conductance. IEEE Transactions on Biomedical Engineering 1997, 44.266–77, 10.1109/10.563296
  23. Kass DA, Midei M, Graves W, Brinker JA, and Maughan WL. Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Catheterization and Cardiovascular Diagnosis 1988, 15.192–202, 10.1002/ccd.1810150314
  24. White PA, Brookes CI, Ravn HB, Stenbøg EE, Christensen TD, Chaturvedi RR, Sorensen K, Hjortdal VE, and Redington AN. The effect of changing excitation frequency on parallel conductance in different sized hearts. Cardiovascular Research 1998, 38.668–75, 10.1016/S0008-6363(98)00052-2
  25. Georgakopoulos D and Kass DA. Estimation of parallel conductance by dual-frequency conductance catheter in mice. American Journal of Physiology-Heart and Circulatory Physiology 2000, 279.H443–H450, 10.1152/ajpheart.2000.279.1.H443
  26. Gawne TJ, Gray KS, and Goldstein RE. Estimating left ventricular offset volume using dual-frequency conductance catheters. Journal of Applied Physiology 1987, 63.872–6, 10.1152/jappl.1987.63.2.872
  27. Larson ER, Feldman MD, Valvano JW, and Pearce JA. Analysis of the spatial sensitivity of conductance/admittance catheter ventricular volume estimation. IEEE Transactions on Biomedical Engineering 2013, 60.2316–24, 10.1109/TBME.2013.2256134
  28. Cheng DK et al. Fundamentals of engineering electro-magnetics. 1993
  29. Gabriel C, Gabriel S, and Corthout yE. The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine & Biology 1996, 41.2231, 10.1088/0031-9155/41/11/001
  30. Malmivuo J and Plonsey R. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York, 1995 .482
  31. Wyatt HL, Meerbaum S, Heng MK, Gueret P, and Corday E. Cross-sectional echocardiography III. Analysis of mathematic models for quantifying volume of symmetric and asymmetric left ventricles. American Heart Journal 1980, 100.821–8, 10.1016/0002-8703(80)90062-9
  32. Korn L, Lyra S, Rüschen D, Telyshev D, Leonhardt S, and Walter M. In silico and in vitro conductivity models of the left heart ventricle. Journal of Electrical Bioimpedance 2020, 11.62–71, 10.2478/joeb-2020-0010
  33. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal-Cardiovascular Imaging 2015, 16.233–71, http://dx.doi.org/10.1093/ehjci/jev014
  34. Russell WMS, Burch RL, et al. The principles of humane experimental technique. London: Methuen & Co. Ltd., 1959
  35. Emboi3D. Heart and pulmonary artery tree from CT angiogram. 2017 Nov. Available from: https://www.embodi3d.com/files/file/59-heart-and-pulmonary-artery-tree-from-ct-angiogram/?%5C_fromLogin=
Language: English
Page range: 125 - 134
Submitted on: Jun 16, 2021
Published on: Dec 27, 2021
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Leonie Korn, Stephan Dahlmanns, Steffen Leonhardt, Marian Walter, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.