References
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ Digital Medicine 2019, 2, 1-11. https://doi.org/10.1038/s41746-019-0136-7
- Rajala, S.; Ahmaniemi, T.; Lindholm, H.; Taipalus, T. Pulse arrival time (PAT) measurement based on arm ECG and finger PPG signals-comparison of PPG feature detection methods for PAT calculation. In Proceedings of 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); pp. 250-253. https://doi.org/10.1109/EMBC.2017.8036809
- Cygankiewicz, I.; Zareba, W. Heart rate variability. In Handb. Clin. Neurol., Elsevier: 2013, 117, 379-393. https://doi.org/10.1016/B978-0-444-53491-0.00031-6
- Peralta, E.; Lazaro, J.; Bailon, R.; Marozas, V.; Gil, E. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals. Physiol. Meas. 2019, 40, 025007. https://doi.org/10.1088/1361-6579/ab009b
- Weinschenk, S.W.; Beise, R.D.; Lorenz, J. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: Agreement of ear photoplethysmography with ECG measurements, in 343 subjects. Eur. J. Appl. Physiol. 2016, 116, 1527-1535. https://doi.org/10.1007/s00421-016-3401-3
- Podaru, A.C.; David, V.; Asiminicesei, O.M. Determination and Comparison of Heart Rate Variability and Pulse Rate Variability. In Proceedings of 2018 International Conference and Exposition on Electrical and Power Engineering (EPE); pp. 0551-0554. https://doi.org/10.1109/ICEPE.2018.8559806
- Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 2014, 62, 522-531. https://doi.org/10.1109/TBME.2014.2359372
- Schäfer, A.; Vagedes, J. How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photoplethysmographic technology with an electrocardiogram. International Journal of Cardiology 2013, 166, 15-29. https://doi.org/10.1016/j.ijcard.2012.03.119
- Pinheiro, N.; Couceiro, R.; Henriques, J.; Muehlsteff, J.; Quintal, I.; Goncalves, L.; Carvalho, P. Can PPG be used for HRV analysis? In Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); pp. 2945-2949. https://doi.org/10.1109/EMBC.2016.7591347
- Jeyhani, V.; Mahdiani, S.; Peltokangas, M.; Vehkaoja, A. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. In Proceedings of 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); pp. 5952-5955. https://doi.org/10.1109/EMBC.2015.7319747
- T. Sengthipphany, S. Tretriluxana, og K. Chitsakul, «Comparison of Heart Rate statistical parameters from Photoplethysmographic signal in resting and exercise conditions», i 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), jun. 2015, pp. 1-5. https://doi.org/10.1109/ECTICon.2015.7207074
- J. A. J. Heathers, «Smartphone-enabled pulse rate variability: An alternative methodology for the collection of heart rate variability in psychophysiological research», International Journal of Psychophysiology. 2013, 89(3), 297-304. https://doi.org/10.1016/j.ijpsycho.2013.05.017
- N. D. Giardino, P. M. Lehrer, og R. Edelberg, «Comparison of finger plethysmograph to ECG in the measurement of heart rate variability», Psychophysiology. 2002, 39(2), 246-253. https://doi.org/10.1111/1469-8986.3920246
- E. Mejía-Mejía, J. M. May, R. Torres, og P. A. Kyriacou, «Pulse rate variability in cardiovascular health: a review on its applications and relationship with heart rate variability», Physiol. Meas. 2020, 41(7), 07TR01. https://doi.org/10.1088/1361-6579/ab998c
- Kostorz, I.; Kowalski, W.; Ludwig, Z.; Zając, J.; Piasecki, A.; Socha, M.; Górka, W. A preliminary study of the utilization of a low resolution ECG signal from handheld ECG monitor. Journal of Medical Informatics Technologies. 2015, 24.
- Thum, M.; Boucsein, W.; Kuhmann, W.; Ray, W. Standardized task strain and system response times in human-computer interaction. Ergonomics. 1995, 38, 1342-1351. https://doi.org/10.1080/00140139508925192
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32(3), 230-236. https://doi.org/10.1109/TBME.1985.325532
- Sedghamiz, H. Matlab Implementation of Pan Tompkins ECG QRS detector, MATLAB Central, Mathworks, March 2014.
- Deegan, B.M.; O'Connor, M.; Lyons, D.; OLaighin, G. A new blood pressure and heart rate signal analysis technique to assess Orthostatic Hypotension and its subtypes. In Proceedings of 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; pp. 935938. https://doi.org/10.1109/IEMBS.2007.4352445
- Lai, P.-H.; Kim, I. Lightweight wrist photoplethysmography for heavy exercise: motion robust heart rate monitoring algorithm. Healthcare Technology Letters. 2015, 2, 6-11. https://doi.org/10.1049/htl.2014.0097
- Kos, M.; Li, X.; Khaghani-Far, I.; Gordon, C.M.; Pavel, M.; Jimison, H.B. Can accelerometry data improve estimates of heart rate variability from wrist pulse PPG sensors? In Proceedings of 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); pp. 1587-1590. https://doi.org/10.1109/EMBC.2017.8037141
- Morelli, D.; Bartoloni, L.; Colombo, M.; Plans, D.; Clifton, D.A. Profiling the propagation of error from PPG to HRV features in a wearable physiological-monitoring device. Healthcare Technology Letters. 2018, 5, 59-64. https://doi.org/10.1049/htl.2017.0039
- H. Kinnunen, A. Rantanen, T. Kentt, og H. Koskimki, «Feasible assessment of recovery and cardiovascular health: accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG», Physiol. Meas. 2020, 41(4), 04NT01. https://doi.org/10.1088/1361-6579/ab840a
- Bhowmik, T.; Dey, J.; Tiwari, V.N. A novel method for accurate estimation of HRV from smartwatch PPG signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 109-112. https://doi.org/10.1109/EMBC.2017.8036774
- M. Nardelli, N. Vanello, G. Galperti, A. Greco, og E. P. Scilingo, «Assessing the Quality of Heart Rate Variability Estimated from Wrist and Finger PPG: A Novel Approach Based on Cross-Mapping Method», Sensors, 2020, 11, 11. https://doi.org/10.3390/s20113156
- Hartmann, V.; Liu, H.; Chen, F.; Qiu, Q.; Hughes, S.; Zheng, D. Quantitative comparison of photoplethysmographic waveform characteristics: effect of measurement site. Front. Physiol. 2019, 10, 198. https://doi.org/10.3389/fphys.2019.00198
- Chen, X.; Chen, T.; Luo, F.; Li, J. Comparison of valley-to-valley and peak-to-peak intervals from photoplethysmographic signals to obtain heart rate variability in the sitting position. In Proceedings of 2013 6th International Conference on Biomedical Engineering and Informatics; pp. 214-218. https://doi.org/10.1109/BMEI.2013.6746936
- Jarchi, D.; Casson, A.J. Towards photoplethysmography-based estimation of instantaneous heart rate during physical activity. IEEE Trans. biomed. Eng. 2017, 64, 2042-2053. https://doi.org/10.1109/TBME.2017.2668763
- Fukushima, H.; Kawanaka, H.; Bhuiyan, M.S.; Oguri, K. Estimating heart rate using wrist-type photoplethysmography and acceleration sensor while running. In Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; pp. 2901-2904. https://doi.org/10.1109/EMBC.2012.6346570