References
- Susmallian S GD, Barnea R, Raziel A. Correct Evaluation of Gastric Wall Thickness May Support a Change in Staplers Size When Performing Sleeve Gastrectomy. The Israel Medical Association Journal: IMAJ. 2017;19:351–4. https://doi.org/10.1016/j.clnesp.2017.02.002
- Chekan E, Whelan RL. Surgical stapling device-tissue interactions: what surgeons need to know to improve patient outcomes. Med Devices (Auckl). 2014;7:305–18. https://doi.org/10.2147/MDER.S67338
- Eriksson S, Nilsson J, Sturesson C. Non-invasive imaging of microcirculation: a technology review. Med Devices (Auckl). 2014;7:445–52. https://doi.org/10.2147/MDER.S51426
- Baker RS, Foote J, Kemmeter P, Brady R, Vroegop T, Serveld M. The Science of Stapling and Leaks. Obesity Surgery. 2004;14(10):1290–8. https://doi.org/10.1381/0960892042583888
- Cheng Z, Dall'Alba D, Foti S, Mariani A, Chupin T, Caldwell DG, et al. Design and Integration of Electrical Bioimpedance Sensing in Surgical Robotic Tools for Tissue Identification and Display. Front Robot AI. 2019;6:55. https://doi.org/10.3389/frobt.2019.00055
- Rigaud B, Hamzaoui L, Frikha MR, Chauveau N, Morucci JP. In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range. Physiological Measurement. 1995;16(3A):A15–A28. https://doi.org/10.1088/0967-3334/16/3A/002
- Ruiz-Vargas A, Ivorra A, Arkwright JW. Design, Construction and Validation of an Electrical Impedance Probe with Contact Force and Temperature Sensors Suitable for in-vivo Measurements. Sci Rep. 2018;8(1):14818. https://doi.org/10.1038/s41598-018-33221-4
- Adler A, Boyle A. Electrical Impedance Tomography: Tissue Properties to Image Measures. IEEE Transactions on Biomedical Engineering. 2017;64(11):2494–504. https://doi.org/10.1109/TBME.2017.2728323
- Karande VC. LigaSure™ 5-mm Blunt Tip Laparoscopic Instrument. J Obstet Gynaecol India. 2015;65(5):350–2. https://doi.org/10.1007/s13224-015-0745-2
- Bera TK. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng. 2014;2014:381251. https://doi.org/10.1155/2014/381251
- Martinsen OG, Grimnes SG, Schwan HP. Interface phenomena and dielectric properties of biological tissue. Encycl Surf Colloid Sci. 2002:2643–52.
- Ramírez-Chavarría RG, Sánchez-Pérez C, Matatagui D, Qureshi N, Pérez-García A, Hernández-Ruíz J. Ex-vivo biological tissue differentiation by the Distribution of Relaxation Times method applied to Electrical Impedance Spectroscopy. Electrochimica Acta. 2018;276:214–22. https://doi.org/10.1016/j.electacta.2018.04.167
- Gregory WD, Marx JJ, Gregory CW, Mikkelson WM, Tjoe JA, Shell J. The Cole relaxation frequency as a parameter to identify cancer in breast tissue. Medical Physics. 2012;39(7 Part1):4167–74. https://doi.org/10.1118/1.4725172
- Halter RJ, Hartov A, Heaney JA, Paulsen KD, Schned AR. Electrical Impedance Spectroscopy of the Human Prostate. IEEE Transactions on Biomedical Engineering. 2007;54(7):1321–7. https://doi.org/10.1109/TBME.2007.897331
- Laufer S, Ivorra A, Reuter VE, Rubinsky B, Solomon SB. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiological Measurement. 2010;31(7):995–1009. https://doi.org/10.1088/0967-3334/31/7/009
- Dzwonczyk R, Rio Cd, Brown DA, Michler RE, Wolf RK, Howie MB. Myocardial electrical impedance responds to ischemia and reperfusion in humans. IEEE Transactions on Biomedical Engineering. 2004;51(12):2206–9. https://doi.org/10.1109/TBME.2004.834297
- Yang L, Zhang G, Song J, Dai M, Xu C, Dong X, et al. Ex-Vivo Characterization of Bioimpedance Spectroscopy of Normal, Ischemic and Hemorrhagic Rabbit Brain Tissue at Frequencies from 10 Hz to 1 MHz. Sensors (Basel). 2016;16(11):1942. https://doi.org/10.3390/s16111942
- Dai Y, Du J, Yang Q, Zhang J. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies. Bioelectromagnetics. 2014;35(6):385–95. https://doi.org/10.1002/bem.21854
- Cole K, Curtis H. Electrical physiology: Electrical resistance and impedance of cells and tissues, in Medical Physics. New York: Year Book Publishers; 1944.
- Gholami-Boroujeny S, Bolic M. Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms. Med Biol Eng Comput. 2016;54(4):643–51. https://doi.org/10.1007/s11517-015-1355-y
- Seoane F, Buendia R, Gil-Pita R. Cole parameter estimation from electrical bioconductance spectroscopy measurements. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3495–8. https://doi.org/10.1109/IEMBS.2010.5627790
- Ayllon D, Seoane F, Gil-Pita R. Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements - A comparative study. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3779–82. https://doi.org/10.1109/IEMBS.2009.5334494
- Bowen PK, Shearier ER, Zhao S, Guillory RJ, 2nd, Zhao F, Goldman J, et al. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys. Advanced healthcare materials. 2016;5(10):1121–40. https://doi.org/10.1002/adhm.201501019
- Schmidt J, Marques MRG, Botti S, Marques MAL. Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials. 2019;5(1):83. https://doi.org/10.1038/s41524-019-0221-0
- Kalvoy H, Tronstad C, Ullensvang K, Steinfeldt T, Sauter AR. Detection of needle to nerve contact based on electric bioimpedance and machine learning methods. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:9–12. https://doi.org/10.1109/EMBC.2017.8036750
- Strand-Amundsen RJ, Tronstad C, Reims HM, Reinholt FP, Høgetveit JO, Tønnessen TI. Machine learning for intraoperative prediction of viability in ischemic small intestine. Physiological Measurement. 2018;39(10):105011. https://doi.org/10.1088/1361-6579/aae0ea
- Chowdhury A, Ghoshal D, Bera T, Chakraborty B, Naresh M. Comparison of two and four electrode methods for studying the impedance variation during cucumber storage using Electrical Impedance Spectroscopy (EIS). 2017. p. 261–5. https://doi.org/10.1201/9781315400624-50
- Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res. 2015;166(1):12–27. https://doi.org/10.1016/j.trsl.2015.01.004
- MathWorks. Machine Learning Toolbox [Available from: https://www.mathworks.com/help/stats/choose-a-classifier.html#bunt0ky.
- Rawlins L, Rawlins MP, Teel D. Human tissue thickness measurements from excised sleeve gastrectomy specimens. Surgical Endoscopy. 2014;28(3):811–4. https://doi.org/10.1007/s00464-013-3264-1
- Strand-Amundsen RJ, Tronstad C, Kalvøy H, Gundersen Y, Krohn CD, Aasen AO, et al. In vivo characterization of ischemic small intestine using bioimpedance measurements. Physiological Measurement. 2016;37(2):257–75. https://doi.org/10.1088/0967-3334/37/2/257
- Veal B, Baldo P, Paulikas A, Eastman J. Understanding Artifacts in Impedance Spectroscopy. Journal of the Electrochemical Society. 2015;162:H47–H57. https://doi.org/10.1149/2.0791501jes
- Barski K, Binda A, Kudlicka E, Jaworski P, Tarnowski W. Gastric wall thickness and stapling in laparoscopic sleeve gastrectomy - a literature review. Wideochir Inne Tech Maloinwazyjne. 2018;13(1):122–7. https://doi.org/10.5114/wiitm.2018.73362
- Moqadam S, Grewal P, Shokoufi M, Golnaraghi M. Compression-dependency of soft tissue bioimpedance for in-vivo and in-vitro tissue testing. Journal of Electrical Bioimpedance. 2015;6:22–32. https://doi.org/10.5617/jeb.1489