References
- Damez JL, Clerjon S, Abouelkaram S. Mesostructure assessed by alternating current spectroscopy during meat ageing. Proc 51st Int Con Meat Sc and Tech, Baltimore, USA, 7–12 August; 2005, 327–330.
- Kleibel A, Pfutzer H, Krause E. Measurement of dielectric loss factor: a routine method of recognizing PSE muscle. Fleishwirtschaft. 1983;63:1183.
- Kristensen L, Purslow P. The effect of ageing on the water-holding capacity of pork: Role of cytoskeletal proteins. Meat Sci. 2001;58:17–23. https://doi.org/10.1016/S0309-1740(00)00125-X
- Lepetit J, Hamel C. Correlations between successive measurements of myofibrillar resistance of raw Longissimus dorsi muscle during ageing. Meat Sci. 1998;49:249–254. https://doi.org/10.1016/S0309-1740(97)00130-7
- Dell’Osa AH, Battacone G, Pulina G, Fois A, Concu A, Kalb A, Melis S, Tocco F, Loviselli A, Velluzzi F. Bio-electrical impedance device for remote control of an indirect index of mechanical tenderness in ripening beef meat. Int. J. Mechanics and Control. 2020;21:139–146.
- Damez JL, Clerjon S. Quantifying and predicting meat and products quality attributes using electromagnetic waves: an overview. Meat Sci. 2013;95:879–896. https://doi.org/10.1016/j.meatsci.2013.04.037
- Banach JK, Zywica R. The effect of electrical stimulation and freezing on electrical conductivity of beef trimed at various times after slaughter. J Food Eng. 2010;100: 119–124. https://doi.org/10.1016/j.jfoodeng.2010.03.035
- Battacone G, Pulina G, Acciaro M, Manca C, Concu D, Fois A, Concu A. Resistive component of meat electrical bioimpedance. Proc 16th Int Conf on Elec Bioimp, Stockholm, Sweden, 19–23 June; 2016; 70.
- Fricke H, Morse S. A mathematical treatment of the electrical conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys Rev 1924;24:575–587. https://doi.org/10.1103/PhysRev.24.575
- Fricke H, Morse S. The electric capacity of tumors of the breast. J Cancer Res. 1926;10:340–376. https://doi.org/10.1371/journal.pone.0023421
- Charpenter J, Goutefongea R, Salé P, Thomasset A. La discrimination des viandres fraiches et congelées par mesure d’impédance à deux frequencies. Annales de Biologie Animale Biochimique et Biophysique 1972;12:173–178. https://doi.org/10.1051/rnd:19720115
- Damez JL, Clerjon S. Meat quality using biophysical method related to meat structure. Meat Sci. 2008;80:132–149. https://doi:10.1016/j.meatsci.2008.05.039
- Chen TH, Zhu YP, Wang P, Han MY, Wang P, Xu XL, Zhou GH. Classification of chicken muscle with different freeze-thaw cycles using impedance and physicochemical properties. J. Food Eng. 2017;196:95–100. https://doi.org/10.1016/j.jfoodeng.2016.10.003
- Analog Devices: Low Power, Five Electrode, Electrocardiogram (ECG) Analog Front End with respiration measurement and pace detection. ADAS1000 datasheet, 2012. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ADAS1000_1000-1_1000-2.pdf (accessed on 05 May 2020).
- Tocco F, Crisafulli A, Marongiu E, Milia R, Kalb A, Concu A. A portable device to assess underwater change of cardio dynamic variables by impedance cardiography. J. Phys.: Conf. Ser. 2012; 407:012026. https://doi.org/10.1088/1742-6596/407/1/012026
- Tocco F, Crisafulli A, Melis F, Porru C, Pittau G, Milia R, Concu A. Cardiovascular adjustments in breath-hold diving: comparison between divers and non-divers in simulated dynamic apnoea. Eur. J. Appl. Physiol. 2012;112:543–54. https://doi.org/10.1007/s00421-011-2006-0
- Tocco F, Marongiu E, Pinna M, Roberto S, Pusceddu M, Angius L, Migliaccio G, Milia R, Concu A, Crisafulli A. Assessment of circulatory adjustments during underwater apnoea in elite divers by means of a portable device. Acta Physiol (Oxf). 2013;207:290–298. https://doi.org/10.1111/apha.12000
- Marongiu E, Crisafulli A, Ghiani G, Olla S, Roberto S, Pinna M, Pusceddu M, Palazzolo M, Sanna I, Concu A, Tocco F. Cardiovascular Responses during free-diving in the sea. Int. J. Sports Med. 2015;36:297–301. https://doi.org/10.1055/s-0034-1389969
- Serra C. Evaluation of cardiodynamic tolerance limits in pilots engaged in simulations of critical activities with the use of dedicated instrumentation. Master of Science in Biomedical Engineering, thesis supervisors: Andrea Manuello Bertetto, Alberto Concu, Politecnico di Torino, Italy, 2020.
- Cesarani A, Sorbolini S, Criscione A, Bordonaro S, Pulina G, Battacone G, Marletta D, Gaspa G, Macciotta NPP. Genome-wide variability and selection signatures in Italian island cattle breeds. Anim. Genet. 2018;49:371–383. https://doi.org/10.1111/age.12697
- Byrne C E, Troy D J, Buckley D J. Postmortem changes in muscle electrical properties of bovine M. Longissimus dorsi and their relationship to meat quality attributes and pH fall. Meat Sci. 2000;54:23–34. https://doi.org/10.1016/S0309-1740(99)00055-8
- Damez JL, Clerjon S, Abouelkaram S, Lepetit J. Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing. J Food Eng. 2008;85:116–122. https://doi.org/10.1016/j.jfoodeng.2007.07.026
- Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. 1996 Phys. Med. Biol. 1996;41:2231–2249. https://doi.org/10.1088/0031-9155/41/11/001
- Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. 1996 Phys. Med. Biol. 1996;41:2251–2269. https://doi.org/10.1088/0031-9155/41/11/002
- Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. 1996 Phys. Med. Biol. 1996;41:2271–2293. https://doi.org/10.1088/0031-9155/41/11/003
- Krzywinski M, Altman N. Visualizing samples with box plots. Nat. Methods. 2014;11:119–120. https://doi.org/10.1038/nmeth.2813
- Streit M, Gehlenborg N. Bar charts and box plots. Nat. Methods. 2014;11:117. https://doi.org/10.1038/nmeth.2807
- Lepetit J, Salé P, Favier R, Dalle R. Electrical impedance and tenderization in bovine meat. Meat Sci. 2002;60: 51–62. https://doi.org/10.1016/S0309-1740(01)00104-8
- Rahelić S, Puač S. Structure of beef longissimus dorsi muscle frozen at various temperatures: Part 1-histological changes in muscle frozen at −10, −22, −33, −78, −115 and −196°C. Meat Sci. 1985;14:63–72. https://doi.org/10.1016/0309-1740(85)90082-8
- Egelandsdal B, Abie SM, Bjarnadottir S, Zhu H, Kolstad H, Bjerke F, Martinsen ØG, Mason A, Münch D. Detectability of the degree of freeze damage in meat depends on analytic-tool selection. Meat Sci. 2019;152:8–19. https://doi.org/10.1016/j.meatsci.2019.02.002
- Ngapo TM, Babare IH, Reynolds J, Mawson RF. Freezing rate storage effects on the ultrastructure of samples of pork. Meat Sci. 1999;53:158–168. https://doi.org/10.1016/s0309-1740(99)00051-0.
- Setyabrata D, Kim b. Impacts of aging/freezing sequence on microstructure, protein degradation and physico-chemical properties of beef muscles. Meat Sci. 2019;151:64–74. https://doi:10.1016/j.meatsci.2019.01.007.
- Grujić R, Petrović L, Pikula B, Amidžić L. Definition of the optimum freezing rate-1. Investigation of structure and ultrastructure of beef M. longissimus dorsi frozen at different freezing rates. Meat Sci. 1993;33:301–318. https://doi.org/10.1016/0309-1740(93)90003-Z
- Salé P. Appareil de detection des viandres decongelees par mesure de conductance eletrique. Bulletin de l’Institut International du Froid. 1972;2:265–275.