Have a personal or library account? Click to login

Electrode positioning to investigate the changes of the thoracic bioimpedance caused by aortic dissection – a simulation study

Open Access
|Jun 2020

References

  1. Khan IA, Nair CK. Clinical, diagnostic and management perspectives of aortic dissection. Elsevier Chest. 2002; 122(1): 311–28. https://doi.org/10.1378/chest.122.1.311
  2. Heuser J. Distributed under a CC-BY-SA-3.0 license Wikimedia Commons. 2016.
  3. Patchett N. Distributed under a CC BY-SA 4.0 license. Wikimedia Commons. 2015.
  4. Altamirano-Diaz L, Welisch E, Dempsey AA, Park TS, Grattan M, Norozi K. Non-invasive measurement of cardiac output in children with repaired coarctation of the aorta using electrical cardiometry compared to transthoracic Doppler echocardiography. Physiol Meas. 2018; 17;39(5): 055003. https://doi.org/10.1088/1361-6579/aac02b
  5. Reinbacher-Köstinger A, Badeli V, Biro O, Magele C. Numerical simulation of conductivity changes in the human thorax caused by aortic dissection. IEEE Trans. Magnetic. 2019;55(6): 5100304. https://doi.org/10.1109/tmag.2019.2895418
  6. Badeli V, Reinbacher-Köstinger A, Biro O, Magele C. Numerical simulation of impedance cardiogram changes in case of chronic aortic dissection. Springer, Singapore. 2020; In: Bertemes-Filho P. (eds) 17th International Conference on Electrical Bioimpedance. ICEBI 2019. IFMBE Proceedings, vol 72. https://doi.org/10.1007/978-981-13-3498-6_9
  7. Reinbacher-Köstinger A, Badeli V, Melito GM, Magele C, Biro O. Numerical simulation of various electrode configurations in impedance cardiography to identify aortic dissection. Springer, Singapore. 2020; In: Bertemes-Filho P. (eds) 17th International Conference on Electrical Bioimpedance. ICEBI 2019. IFMBE Proceedings, vol 72. https://doi.org/10.1007/978-981-13-3498-6_7
  8. Bernstein DP. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations. J Electr Bioimp. 2010; 1: 2–17. https://doi.org/10.5617/jeb.51
  9. Ulbrich M, Muhlsteff J, Leonhardt S, Walter M. Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations. Physiol. Meas. 2014; 35: 1451–1468. https://doi.org/10.1088/0967-3334/35/7/1451
  10. de Sitter A, Verdaasdonk RM, Faes TJC. Do mathematical model studies settle the controversy on the origin of cardiac synchronous transthoracic electrical impedance variations? A systematic review. Physiol. Meas. 2016; 37: R88–R108. https://doi.org/10.1088/0967-3334/37/9/r88
  11. Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA. On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J. Roy. Soc. Interface. 2016; 13(119): 20160073. https://doi.org/10.1098/rsif.2016.0073
  12. Visser KR. Electric properties of flowing blood and impedance cardiography. Ann. Biomed. Eng. 1989; 17: 463–473. https://doi.org/10.1007/bf02368066
  13. Hoetink AE, Faes TJ, Visser KR, Heethaar RM. On the flow dependency of the electrical conductivity of blood. IEEE Trans. Biomed. Eng. 2004; 51(7): 1251–1261. https://doi.org/10.1109/tbme.2004.827263
  14. Fuji M, Nakajima K, Sakamoto K, Kanai H. Orientation and deformation of erythrocytes in flowing blood. Annals of the New York Academy of Sciences. 1999; 873(1): 245–61. https://doi.org/10.1111/j.1749-6632.1999.tb09473.x
  15. Gaw RL, Cornish BH, Thomas BJ. The electrical impedance of pulsatile blood flowing through rigid tubes: an experimental investigation. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography. 2007; pp. 73–76. https://doi.org/10.1007/978-3-540-73841-1_22
  16. Gaw RL, Cornish BH, Thomas BJ. The electrical impedance of pulsatile blood flowing through rigid tubes: A theoretical investigation. IEEE Transaction on Biomedical Engineering. 2008; 55(2): 721–727. https://doi.org/10.1109/tbme.2007.903531
  17. COMSOL Multiphysics. v. 5.3. COMSOL AB, Stockholm, Sweden.
  18. Mansouri S, Alhadidi T, Chabchoub S, Salah RB. Impedance cardiography: Recent applications and developments. Biomedical Research. 2018; 29 (19): 3542–3552. https://doi.org/10.4066/biomedicalresearch.29-17-3479
  19. Gabriel S. The dielectric properties of biological tissues. Physics in Medicine and Biology. 1996; 41: 2231–2249.
  20. Chen D, Müller-Eschner M, von Tengg-Kobligk H, Barber D, Böckler D, Hose R, Ventikos Y. A patient-specific study of Type-B aortic dissection: evaluation of true-false lumen blood exchange. BioMedical Engineering OnLine. 2012; 12: 65. https://doi.org/10.1186/1475-925x-12-65
  21. Cheng Z, Tan FP, Riga CV, Bicknell CD, Hamady MS, Gibbs RG, Wood NB, Xu XY. Analysis of flow patterns in a patient-specific aortic dissection model. Journal of Biomechanical Engineering. 2010; 132(5), 051007. https://doi.org/10.1115/1.4000964
  22. Sobol’ IM. Sensitivity estimates for nonlinear mathematical models. Math Modeling Comput Exp. 1993; 1: 407–14.
  23. Saltelli A. et al. Global sensitivity analysis: the primer. John Wiley & Sons. 2008.
  24. Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety. 2008; 93(7): 964–979. https://doi.org/10.1016/j.ress.2007.04.002
  25. Crestaux T, Maître OL, Martinez J-M. Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety. 2009; 94.7: 1161–1172. https://doi.org/10.1016/j.ress.2008.10.008
  26. Xiu D, Karniadakis GE. The Wiener – Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing. 2002; 24.2: 619–644. https://doi.org/10.1137/s1064827501387826
  27. Alexanderian A, Gremaud PA, Smith RC. Variance-based sensitivity analysis for time-dependent processes. Reliability Engineering & System Safety. 2019; 106722. https://doi.org/10.1016/j.ress.2019.106722
  28. Marelli S, Lamas C, Sudret B. UQLab user manual - Sensitivity analysis. Report UQLab-V1.3–106, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich. 2019. https://doi.org/10.1061/9780784413609.257
  29. Marelli S, Sudret B. UQLab user manual - Polynomial Chaos Expansions. Report UQLab-V1.3–104, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich. 2019. https://doi.org/10.1061/9780784413609.257
  30. Wolak A, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC: Cardiovascular Imaging. 2008; 1(2): 200–209. https://doi.org/10.1016/j.jcmg.2007.11.005
  31. Bernstein DP, Lemmens HJM. Stroke volume equation for impedance cardiography. Medical & Biological Engineering & Computing. 2005; 43(4): 443–450.
Language: English
Page range: 38 - 48
Submitted on: Mar 16, 2020
Published on: Jun 25, 2020
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 V. Badeli, G. M. Melito, A. Reinbacher-Köstinger, O. Bíró, K. Ellermann, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.