Altamirano-Diaz L, Welisch E, Dempsey AA, Park TS, Grattan M, Norozi K. Non-invasive measurement of cardiac output in children with repaired coarctation of the aorta using electrical cardiometry compared to transthoracic Doppler echocardiography. Physiol Meas. 2018; 17;39(5): 055003. https://doi.org/10.1088/1361-6579/aac02b
Reinbacher-Köstinger A, Badeli V, Biro O, Magele C. Numerical simulation of conductivity changes in the human thorax caused by aortic dissection. IEEE Trans. Magnetic. 2019;55(6): 5100304. https://doi.org/10.1109/tmag.2019.2895418
Badeli V, Reinbacher-Köstinger A, Biro O, Magele C. Numerical simulation of impedance cardiogram changes in case of chronic aortic dissection. Springer, Singapore. 2020; In: Bertemes-Filho P. (eds) 17th International Conference on Electrical Bioimpedance. ICEBI 2019. IFMBE Proceedings, vol 72. https://doi.org/10.1007/978-981-13-3498-6_9
Reinbacher-Köstinger A, Badeli V, Melito GM, Magele C, Biro O. Numerical simulation of various electrode configurations in impedance cardiography to identify aortic dissection. Springer, Singapore. 2020; In: Bertemes-Filho P. (eds) 17th International Conference on Electrical Bioimpedance. ICEBI 2019. IFMBE Proceedings, vol 72. https://doi.org/10.1007/978-981-13-3498-6_7
Bernstein DP. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations. J Electr Bioimp. 2010; 1: 2–17. https://doi.org/10.5617/jeb.51
Ulbrich M, Muhlsteff J, Leonhardt S, Walter M. Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations. Physiol. Meas. 2014; 35: 1451–1468. https://doi.org/10.1088/0967-3334/35/7/1451
de Sitter A, Verdaasdonk RM, Faes TJC. Do mathematical model studies settle the controversy on the origin of cardiac synchronous transthoracic electrical impedance variations? A systematic review. Physiol. Meas. 2016; 37: R88–R108. https://doi.org/10.1088/0967-3334/37/9/r88
Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA. On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J. Roy. Soc. Interface. 2016; 13(119): 20160073. https://doi.org/10.1098/rsif.2016.0073
Fuji M, Nakajima K, Sakamoto K, Kanai H. Orientation and deformation of erythrocytes in flowing blood. Annals of the New York Academy of Sciences. 1999; 873(1): 245–61. https://doi.org/10.1111/j.1749-6632.1999.tb09473.x
Gaw RL, Cornish BH, Thomas BJ. The electrical impedance of pulsatile blood flowing through rigid tubes: an experimental investigation. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography. 2007; pp. 73–76. https://doi.org/10.1007/978-3-540-73841-1_22
Gaw RL, Cornish BH, Thomas BJ. The electrical impedance of pulsatile blood flowing through rigid tubes: A theoretical investigation. IEEE Transaction on Biomedical Engineering. 2008; 55(2): 721–727. https://doi.org/10.1109/tbme.2007.903531
Chen D, Müller-Eschner M, von Tengg-Kobligk H, Barber D, Böckler D, Hose R, Ventikos Y. A patient-specific study of Type-B aortic dissection: evaluation of true-false lumen blood exchange. BioMedical Engineering OnLine. 2012; 12: 65. https://doi.org/10.1186/1475-925x-12-65
Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety. 2008; 93(7): 964–979. https://doi.org/10.1016/j.ress.2007.04.002
Alexanderian A, Gremaud PA, Smith RC. Variance-based sensitivity analysis for time-dependent processes. Reliability Engineering & System Safety. 2019; 106722. https://doi.org/10.1016/j.ress.2019.106722
Wolak A, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC: Cardiovascular Imaging. 2008; 1(2): 200–209. https://doi.org/10.1016/j.jcmg.2007.11.005