Have a personal or library account? Click to login
Possibilities in the application of machine learning on bioimpedance time-series Cover

Possibilities in the application of machine learning on bioimpedance time-series

Open Access
|Jul 2019

References

  1. Grimnes S, Martinsen ØG. Bioimpedance and Bioelectricity Basics. Third ed: Academic press, Elsevier; 2015. 563 p. https://doi.org/10.1016/b978-0-12-411470-8.00011-8">https://doi.org/10.1016/b978-0-12-411470-8.00011-8
  2. Halter RJ, Zhou T, Meaney PM, Hartov A, Barth RJ, Jr., Rosenkranz KM, et al. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience. Physiological Measurement. 2009;30(6):S121-36. https://doi.org/10.1088/0967-3334/30/6/s08">https://doi.org/10.1088/0967-3334/30/6/s08
  3. Schafer M, Schlegel C, Kirlum HJ, Gersing E, Gebhard MM. Monitoring of damage to skeletal muscle tissues caused by ischemia. Bioelectrochemistry and Bioenergetics. 1998;45:151–5. https://doi.org/10.1016/s0302-4598(98)00083-x">https://doi.org/10.1016/s0302-4598(98)00083-x
  4. Gersing E. Impedance spectroscopy on living tissue for determination of the state of organs. Bioelectrochemistry and Bioenergetics. 1998;45(2 ):145-9. https://doi.org/10.1016/s0302-4598(98)00079-8">https://doi.org/10.1016/s0302-4598(98)00079-8
  5. Chester CJ, Gaynor PT, Jones RD, Huckabee M-L. Electrical bioimpedance measurement as a tool for dysphagia visualisation. Healthcare Technology Letters. 2014;1(3):115-8. https://doi.org/10.1049/htl.2014.0067">https://doi.org/10.1049/htl.2014.0067
  6. Spottorno J, Multigner M, Rivero G, Alvarez L, de la Venta J, Santos M. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current. Physics in Medicine and Biology. 2008;53(6):1701-13. https://doi.org/10.1088/0031-9155/53/6/014">https://doi.org/10.1088/0031-9155/53/6/014
  7. Martinsen ØG, Grimnes S, Mirtaheri P. Non-invasive measurements of postmortem changes in dielectric properties of haddock muscle - a pilot study. J Food Eng. 2000;43:189-92. https://doi.org/10.1016/s0260-8774(99)00151-x">https://doi.org/10.1016/s0260-8774(99)00151-x
  8. Gheorghiu M, Gersing E. Revealing alteration of membrane structures during ischema using impedance spectroscopy. Songklanakarin J Sci Technol. 2002;24 (Suppl.):777-84.
  9. Haemmerich D, Ozkan R, Tungjitkusolmun S, Tsai JZ, Mahvi DM, Staelin ST, et al. Changes in electrical resistivity of swine liver after occlusion and postmortem. Medical & Biological Engineering & Computing. 2002;40(1):29-33. https://doi.org/10.1007/bf02347692">https://doi.org/10.1007/bf02347692
  10. Konishi Y, Morimoto T, Kinouchi Y, Iritani T, Monden Y. Electrical properties of extracted rat liver tissue. Res Exp Med (Berl). 1995;195(4):183-92. https://doi.org/10.1007/bf02576787">https://doi.org/10.1007/bf02576787
  11. Strand-Amundsen RJ, Tronstad C, Kalvoy H, Ruud TE, Hogetveit JO, Martinsen ØG, et al. Small intestinal ischemia and reperfusion - bioimpedance measurements. Physiological Measurement. 2018;39(2):025001. https://doi.org/10.1088/1361-6579/aaa576">https://doi.org/10.1088/1361-6579/aaa576
  12. Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia. Annals of the New York Academy of Sciences. 1999;873:65-71. https://doi.org/10.1111/j.1749-6632.1999.tb09450.x">https://doi.org/10.1111/j.1749-6632.1999.tb09450.x
  13. Strand-Amundsen RJ, Tronstad C, Reims HM, Reinholt FP, Høgetveit JO, Tonnessen TI. Machine learning for intraoperative prediction of viability in ischemic small intestine. Physiological Measurement. 2018;39(10):105011. https://doi.org/10.1088/1361-6579/aae0ea">https://doi.org/10.1088/1361-6579/aae0ea
  14. A Critical Review of Recurrent Neural Networks for Sequence Learning [Internet]. Cornell University Library. 2015 [cited 29.11.2018]. Available from: arXiv.org > cs > arXiv:1506.00019.
  15. Bengio Y. Practical Recommendations for Gradient-Based Training of Deep Architectures2012 15.03.2018. Available from: arXiv:1206.5533 [cs.LG].
  16. Williams R, Ashton K, Aspinall R, Bellis MA, Bosanquet J, Cramp ME, et al. Implementation of the Lancet Standing Commission on Liver Disease in the UK. Lancet. 2015;386(10008):2098-111. https://doi.org/10.1016/s0140-6736(15)00680-7">https://doi.org/10.1016/s0140-6736(15)00680-7
  17. Laing RW, Mergental H, Yap C, Kirkham A, Whilku M, Barton D, et al. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open. 2017;7(11):e017733.
  18. Practical Recommendations for Gradient-Based Training of Deep Architectures [Internet]. Cornell University Library. 2012 [cited 29.11.2018]. Available from: arXiv.org > cs > arXiv:1206.5533v2.
  19. Kalvøy H, Johnsen GK, Martinsen ØG, Grimnes S. New method for separation of electrode polarization impedance from measured tissue impedance. The Open Biomedical Engineering Journal. 2011;5:8-13. https://doi.org/10.2174/1874120701105010008">https://doi.org/10.2174/1874120701105010008
  20. Ruiz-Vargas A, Ivorra A, Arkwright JW, editors. Monitoring the Effect of Contact Pressure on Bioimpedance Measurements. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2018: IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/embc.2018.8513173">https://doi.org/10.1109/embc.2018.8513173
  21. Ramasamy S, Bennet D, Kim S. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform. Int J Nanomedicine. 2014;9:5789-809. https://doi.org/10.2147/ijn.s71128">https://doi.org/10.2147/ijn.s71128
  22. Kekonen A, Bergelin M, Eriksson JE, Vaalasti A, Ylanen H, Viik J. Bioimpedance measurement based evaluation of wound healing. Physiological Measurement. 2017;38(7):1373-83. https://doi.org/10.1088/1361-6579/aa63d6">https://doi.org/10.1088/1361-6579/aa63d6
  23. Castro-Giráldez M, Botella P, Toldrá F, Fito P. Low-frequency dielectric spectrum to determine pork meat quality. . Innovative Food Science & Emerging Technologies. 2010;11(2):376-86. https://doi.org/10.1016/j.ifset.2010.01.011">https://doi.org/10.1016/j.ifset.2010.01.011
  24. Kalvøy H, Frich L, Grimnes S, Martinsen ØG, Hol PK, Stubhaug A. Impedance-based tissue discrimination for needle guidance. Physiological measurement. 2009;30(2):129-40. https://doi.org/10.1088/0967-3334/30/2/002">https://doi.org/10.1088/0967-3334/30/2/002
  25. Wang HB, Yen CW, Liang JT, Wang Q, Liu GZ, Song R. A robust electrode configuration for bioimpedance measurement of respiration. J Healthc Eng. 2014;5(3):313-27.
  26. Kusche R, Klimach P, Ryschka M. A Multichannel Real-Time Bioimpedance Measurement Device for Pulse Wave Analysis. IEEE Trans Biomed Circuits Syst. 2018;12(3):614-22. https://doi.org/10.1109/tbcas.2018.2812222">https://doi.org/10.1109/tbcas.2018.2812222
Language: English
Page range: 24 - 33
Submitted on: Nov 30, 2018
Published on: Jul 2, 2019
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2019 Christian Tronstad, Runar Strand-Amundsen, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.