Have a personal or library account? Click to login
Enhancing sharp features by locally relaxing regularization for reconstructed images in electrical impedance tomography Cover

Enhancing sharp features by locally relaxing regularization for reconstructed images in electrical impedance tomography

Open Access
|Jul 2019

References

  1. Adler, A. and Guardo, R., 1996. Electrical impedance tomography: regularized imaging and contrast detection. IEEE Transactions on Medical Imaging, 15(2), pp.170-179.9. https://doi.org/10.1109/42.491418">https://doi.org/10.1109/42.491418
  2. Adler, A. and Lionheart, W.R., 2006. Uses and abuses of EIDORS: an extensible software base for EIT. Physiological Measurement, 27(5), pp.S25-42. https://doi.org/10.1088/0967-3334/27/5/s03">https://doi.org/10.1088/0967-3334/27/5/s03
  3. Adler, A., Arnold, J.H., Bayford, R., Borsic, A., Brown, B., Dixon, P., Faes, T.J., Frerichs, I., Gagnon, H., Gärber, Y. and Grychtol, B., 2009. GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiological Measurement, 30(6), p.S35. https://doi.org/10.1088/0967-3334/30/6/s03">https://doi.org/10.1088/0967-3334/30/6/s03
  4. Barber, D. C., and Brown, B. H., 1984. Applied potential tomography. Journal of Physics E: Scientific Instruments 17(9), p. 723
  5. Bera, T.K. and Nagaraju, J., 2011. Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement, 44(3), pp.518-526. https://doi.org/10.1016/j.measurement.2010.11.015">https://doi.org/10.1016/j.measurement.2010.11.015
  6. Bera, T.K., Biswas, S.K., Rajan, K. and Nagaraju, J., 2011. Improving Conductivity Image Quality Using Block Matrix-based Multiple Regularization (BMMR) Technique in EIT&58; A Simulation Study. Journal of Electrical Bioimpedance, 2(1), pp.33-47. https://doi.org/10.5617/jeb.170">https://doi.org/10.5617/jeb.170
  7. Breckon, W.R., 1990. Image reconstruction in electrical impedance tomography (Doctoral dissertation, Oxford Polytechnic).
  8. Cheney, M., Isaacson, D., Newell, J.C., Simske, S. and Goble, J., 1990. NOSER: An algorithm for solving the inverse conductivity problem. International Journal of Imaging Systems and Technology, 2(2), pp.66-75. https://doi.org/10.1002/ima.1850020203">https://doi.org/10.1002/ima.1850020203
  9. Cui, M., Wonka, P., Razdan, A. and Hu, J., 2007. A new image registration scheme based on curvature scale space curve matching. The Visual Computer, 23(8), pp.607-618. https://doi.org/10.1007/s00371-007-0164-1">https://doi.org/10.1007/s00371-007-0164-1
  10. González, G., Kolehmainen, V. and Seppänen, A., 2017. Isotropic and anisotropic total variation regularization in electrical impedance tomography. Computers & Mathematics with Applications, 74(3), pp.564-576. https://doi.org/10.1016/j.camwa.2017.05.004">https://doi.org/10.1016/j.camwa.2017.05.004
  11. Gonzalez, R.S. and Wintz, P., 1977. Digital image processing. Addison Wesley.
  12. Graham, B.M., 2007. Enhancements in Electrical Impedance Tomography (EIT) image reconstruction for three-dimensional lung imaging (Doctoral dissertation, University of Ottawa, Canada).
  13. Hauptmann, A., Kolehmainen, V., Mach, N.M., Savolainen, T., Seppänen, A. and Siltanen, S., 2017. Open 2D electrical impedance tomography data archive. arXiv preprint arXiv:1704.01178.
  14. Holder, D.S. ed., 2004. Electrical impedance tomography: methods, history and applications. CRC Press.
  15. Javaherian, A., Movafeghi, A. and Faghihi, R., 2013. Reducing negative effects of quadratic norm regularization on image reconstruction in electrical impedance tomography. Applied Mathematical Modelling, 37(8), pp.5637-5652. https://doi.org/10.1016/j.apm.2012.11.022">https://doi.org/10.1016/j.apm.2012.11.022
  16. Kang, S.I., Khambampati, A.K., Kim, B.S. and Kim, K.Y., 2017. EIT image reconstruction for two-phase flow monitoring using a subdomain based regularization method. Flow Measurement and Instrumentation, 53, pp.28-38. https://doi.org/10.1016/j.flowmeasinst.2016.06.002">https://doi.org/10.1016/j.flowmeasinst.2016.06.002
  17. Polydorides, N. and Lionheart, W.R., 2002. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project. Measurement Science and Technology, 13(12), p.1871. https://doi.org/10.1088/0957-0233/13/12/310">https://doi.org/10.1088/0957-0233/13/12/310
  18. Polydorides, N., 2002. Image reconstruction algorithms for soft field tomography (Doctoral dissertation, University of Manchester).
  19. Ranade, N.V. and Gharpure, D.C., 2015, March. Design and development of instrumentation for acquiring electrical impedance tomography data. In Physics and Technology of Sensors (ISPTS), 2015 2nd IEEE International Symposium on (pp. 97-101). https://doi.org/10.1109/ispts.2015.7220091">https://doi.org/10.1109/ispts.2015.7220091
  20. Seagar, A.D., Barber, D.C. and Brown, B.H., 1987. Theoretical limits to sensitivity and resolution in impedance imaging. Clinical Physics and Physiological Measurement, 8(4A), p.13. https://doi.org/10.1088/0143-0815/8/4a/003">https://doi.org/10.1088/0143-0815/8/4a/003
  21. Subburaj, K., Ravi, B. and Agarwal, M., 2009. Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan images. Computerized Medical Imaging and Graphics, 33(5), pp.359-368. https://doi.org/10.1016/j.compmedimag.2009.03.001">https://doi.org/10.1016/j.compmedimag.2009.03.001
  22. Vauhkonen, M., Vadasz, D., Karjalainen, P.A., Somersalo, E. and Kaipio, J.P., 1998. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Transactions on Medical Imaging, 17(2), pp.285-293. https://doi.org/10.1109/42.700740">https://doi.org/10.1109/42.700740
  23. Vergara, S., Sbarbaro, D. and Johansen, T.A., 2017. Accurate position estimation methods based on electrical impedance tomography measurements. Measurement Science and Technology, 28(8), p.084003. https://doi.org/10.1088/1361-6501/aa743f">https://doi.org/10.1088/1361-6501/aa743f
  24. Yang, Chuan Li., 2014. Electrical impedance tomography: algorithms and applications (Doctoral Dissertation, University of Bath, UK).
Language: English
Page range: 2 - 13
Submitted on: May 30, 2018
Published on: Jul 2, 2019
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2019 Nanda V. Ranade, Damayanti C. Gharpure, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.