Have a personal or library account? Click to login
Systematic variability in ICG recordings results in ICG complex subtypes – steps towards the enhancement of ICG characterization Cover

Systematic variability in ICG recordings results in ICG complex subtypes – steps towards the enhancement of ICG characterization

Open Access
|Dec 2018

References

  1. J. Nyboer, "Bagno, s., Barnett, A, Halsey, RH Radiocardiograms: Electricalmpedance Changes of the Heart in Relation to Electrocardiograms and Heart Sounds," J. Clin. nves., 19, vol. 963, 1940.
  2. W. Kubicek, D. Witsoe, R. Patterson, M. Mosharrata, J. Karnegis, and A. From, "Development and evaluation of an impedance cardiographic system to measure cardiac output and development o5 an oxygen consumption rate computing system utilizing a quadrapole mass spectrometer," National Aeronautics and Space Administration, NASA-CR-92220. (Also N68-32973.), 1967.
  3. W. R. Patterson and J. Shewchun, "Alternate approach to the resolution of tunneling current structure by differentiation," Review of Scientific Instruments, vol. 35, pp. 1704-1707, 1964. https://doi.org/10.1063/1.1719283
  4. J. Karnegis, W. Kubicek, R. Mattson, R. Patterson, and D. Witsoe, "Development and evaluation of an impedance cardiac output system," 1966.
  5. W. Kubicek, R. Patterson, and D. Witsoe, "Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system," Annals of the New York Academy of Sciences, vol. 170, pp. 724-732, 1970. https://doi.org/10.1111/j.1749-6632.1970.tb17735.x
  6. Z. Lababidi, D. Ehmke, R. E. Durnin, P. E. Leaverton, and R. M. Lauer, "The first derivative thoracic impedance cardiogram," Circulation, vol. 41, pp. 651-658, 1970. https://doi.org/10.1161/01.CIR.41.4.651
  7. M. T. Allen, J. Fahrenberg, R. M. Kelsey, W. R. Lovallo, and L. J. Doornen, "Methodological guidelines for impedance cardiography," Psychophysiology, vol. 27, pp. 1-23, 1990. https://doi.org/10.1111/j.1469-8986.1990.tb02171.x
  8. D. Bernstein and H. J. Lemmens, "Stroke volume equation for impedance cardiography," Medical and Biological Engineering and Computing, vol. 43, pp. 443-450, 2005. https://doi.org/10.1007/BF02344724
  9. R. L. Summers, W. C. Shoemaker, W. F. Peacock, D. S. Ander, and T. G. Coleman, "Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography," Academic emergency medicine, vol. 10, pp. 669-680, 2003. https://doi.org/10.1197/aemj.10.6.669
  10. A. P. DeMarzo and R. M. Lang, "A new algorithm for improved detection of aortic valve opening by impedance cardiography," in Computers in Cardiology, 1996, 1996, pp. 373-376.
  11. D. L. Lozano, G. Norman, D. Knox, B. L. Wood, B. D. Miller, C. F. Emery, et al., "Where to B in dZ/dt," Psychophysiology, vol. 44, pp. 113-119, 2007. https://doi.org/10.1111/j.1469-8986.2006.00468.x
  12. J. H. Meijer, S. Boesveldt, E. Elbertse, and H. Berendse, "Method to measure autonomic control of cardiac function using time interval parameters from impedance cardiography," Physiological measurement, vol. 29, p. S383, 2008. https://doi.org/10.1088/0967-3334/29/6/S32
  13. M. Handke, C. Jahnke, G. Heinrichs, J. Schlegel, C. Vos, D. Schmitt, et al., "New three-dimensional echocardiographic system using digital radiofrequency data—visualization and quantitative analysis of aortic valve dynamics with high resolution: methods, feasibility, and initial clinical experience," Circulation, vol. 107, pp. 2876-2879, 2003. https://doi.org/10.1161/01.CIR.0000077909.54159.B4
  14. W. Kubicek, J. Kottke, M. U. Ramos, R. Patterson, D. Witsoe, J. Labree, et al., "The Minnesota impedance cardiograph-theory and applications," Biomedical engineering, vol. 9, p. 410, 1974.
  15. A. P. DeMarzo, "Using impedance cardiography to detect subclinical cardiovascular disease in women with multiple risk factors: a pilot study," Preventive cardiology, vol. 12, pp. 102108, 2009. https://doi.org/10.1111/j.1751-7141.2008.00012.x
  16. T. Kööbi, M. Kähönen, T. Iivainen, and V. Turjanmaa, "Simultaneous non‐invasive assessment of arterial stiffness and haemodynamics–a validation study," Clinical physiology and functional imaging, vol. 23, pp. 31-36, 2003. https://doi.org/10.1046/j.1475-097X.2003.00465.x
  17. G. Cybulski, "Ambulatory impedance cardiography," in Ambulatory Impedance Cardiography, ed: Springer, 2011, pp. 39-56.
  18. K. Sakamoto, K. Muto, H. Kanai, and M. Iizuka, "Problems of impedance cardiography," Medical and Biological Engineering and Computing, vol. 17, pp. 697-709, 1979. https://doi.org/10.1007/BF02441549
  19. M. Ulbrich, J. Mühlsteff, S. Leonhardt, and M. Walter, "Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations," Physiological measurement, vol. 35, p. 1451, 2014. https://doi.org/10.1088/0967-3334/35/7/1451
  20. M. Ulbrich, J. Muhlsteff, P. Paluchowski, and S. Leonhardt, "Erythrocyte orientation and lung conductivity analysis with a high temporal resolution FEM model for bioimpedance measurements," Lecture Notes on Impedance Spectroscopy: Measurement, Modeling and Applications, vol. 3, p. 71, 2012.
  21. P. Carvalho, R. P. Paiva, J. Henriques, M. Antunes, I. Quintal, and J. Muehlsteff, "Robust Characteristic Points for ICG-Definition and Comparative Analysis," in BIOSIGNALS, 2011, pp. 161-168.
  22. BIOPAC Systems Inc. (2018). Biopac AcqKnowledge impedance. Available: [Online]: https://www.biopac.com
  23. Y. Miyamoto, M. Takahashi, T. Tamura, T. Nakamura, T. Hiura, and M. Mikami, "Continuous determination of cardiac output during exercise by the use of impedance plethysmography," Medical and Biological Engineering and Computing, vol. 19, pp. 638-644, 1981. https://doi.org/10.1007/BF02442779
  24. H. Riese, P. F. Groot, M. van den Berg, N. H. Kupper, E. H. Magnee, E. J. Rohaan, et al., "Large-scale ensemble averaging of ambulatory impedance cardiograms," Behavior Research Methods, vol. 35, pp. 467-477, 2003. https://doi.org/10.3758/BF03195525
  25. J. C. M. Ruiz, M. Rempfler, F. Seoane, and K. Lindecrantz, "Textrode-enabled transthoracic electrical bioimpedance measurements-towards wearable applications of impedance cardiography," Journal of Electrical Bioimpedance, vol. 4, pp. 45-50, 2013.
  26. M. Rempfler, "On the Feasibility of Textrodes for Impedance Cardiography," BIOMEDICAL ENGINEERING, University of Borås, 2011.
  27. A. Hafid, S. Benouar, M. Kedir-Talha, F. Abtahi, M. Attari, and F. Seoane, "Full Impedance Cardiography measurement device using Raspberry PI3 and System-on-Chip biomedical Instrumentation Solutions," IEEE Journal of Biomedical and Health Informatics, 2017.
  28. J. Pan and W. J. Tompkins, "A real-time QRS detection algorithm," IEEE transactions on biomedical engineering, pp. 230-236, 1985. https://doi.org/10.1109/TBME.1985.325532
  29. S. Thomas, "Impedance cardiography using the Sramek-Bernstein method: accuracy and variability at rest and during exercise," British journal of clinical pharmacology, vol. 34, p. 467, 1992.
  30. N. C. S. Capela, "IMPEDANCE CARDIOGRAPHY," University of Coimbra, 2013.
  31. G. Cotter, A. Schachner, L. Sasson, H. Dekel, and Y. Moshkovitz, "Impedance cardiography revisited," Physiological measurement, vol. 27, p. 817, 2006. https://doi.org/10.1088/0967-3334/27/9/005
  32. M. Ulbrich, P. Paluchowski, J. Mühlsteff, and S. Leonhardt, "High temporal resolution finite element simulations of the aorta for thoracic impedance cardiography," in Computing in Cardiology, 2011, 2011, pp. 149-152.
Language: English
Page range: 72 - 82
Submitted on: Jul 30, 2018
Published on: Dec 19, 2018
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Sara Benouar, Abdelakram Hafid, Mokhtar Attari, Malika Kedir-Talha, Fernando Seoane, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.