Have a personal or library account? Click to login
Design of current sources for load common mode optimization Cover

Design of current sources for load common mode optimization

Open Access
|Dec 2018

References

  1. Boone KG., Holder DS. Current approaches to analogue instrumentation design in electrical impedance tomography. Physiological measurement, 1996, 17(4): 229. https://doi.org/10.1088/0967-3334/17/4/001
  2. Aberg P Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE transactions on biomedical engineering, 2004, 51(12): 20972102. https://doi.org/10.1109/TBME.2004.83652
  3. Yang Y, Wang J. A design of bioimpedance spectrometer for early detection of pressure ulcer. In: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 2006. p. 6602-6604.
  4. Seoane F; Bragós R; Lindecrantz K. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems. A novel approach. In: Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE. IEEE, 2006. p. 51215125. https://doi.org/10.1109/IEMBS.2006.259566
  5. Mohamadou Y Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source. Measurement Science and Technology, 2012, 23.10: 105703.
  6. Sansen W, Geeraerts B, Van Petegem W, Dehaene W, Steyaert M. Voltage versus current driven high frequency EIT systems. In: Biomedical Engineering Days, 1992. Proceedings of the 1992 International. IEEE, 1992. p. 102-106. https://doi.org/10.1109/IBED.1992.24707
  7. Qureshi TR, Chatwin C & Wang W. (2013). Bio-impedance excitation system: A comparison of voltage source and current source designs. APCBEE Procedia, 7, 42-47. https://doi.org/10.1016/j.apcbee.2013.08.01
  8. Mohamadou Y, Oh TI, Wi H, Sohal H, Farooq A, Woo EJ & McEwan AL (2012). Performance evaluation of wideband bioimpedance spectroscopy using constant voltage source and constant current source. Measurement Science and Technology, 23(10), 105703. https://doi.org/10.1088/0957-0233/23/10/10570
  9. Hong H, Demosthenous A, Triantis IF, Langlois P, Bayford R. A high output impedance CMOS current driver for bioimpedance measurements. In: Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE. IEEE, 2010. p. 230-233. https://doi.org/10.1109/BIOCAS.2010.570961
  10. Tucker AS, Fox RM, Sadleir RJ. Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7.1: 63-70. https://doi.org/10.1109/TBCAS.2012.219911
  11. Bertemes-Filho P, Felipe A, Vincence VC. High accurate Howland current source: Output constraints analysis. Circuits and Systems, 2013, 4.07: 451.
  12. Constantin AV, Gheorghe GI. Simulations of basics topologies and method for practical determination of the output impedance for Howland current sources used for chemical microsensors and biomedical application. In: International Semiconductor Conference (CAS), 2016. IEEE, 2016. p. 183-186. https://doi.org/10.1109/SMICND.2016.778308
  13. Morcelles KF, Sirtoli VG, Bertemes-Filho P, Vincence VC. Howland current source for high impedance load applications. Review of Scientific Instruments, 2017, 88.11: 114705. https://doi.org/10.1063/1.500533
  14. Bertemes-Filho P, Lima RG, Tanaka H. A Current Source using a Negative Impedance Converter (NIC) for Electrical Impedance Tomography (EIT). In: Proceedings of the 17th International Congress on Mechanical Engineering. São Paulo. 2003. p. 83-7.
  15. Qureshi TR, Chatwin CR, Huber N, Zarafshani A, Tunstall B, Wang W. Comparison of Howland and General Impedance Converter (GIC) circuit based current sources for bioimpedance measurements. In: Journal of Physics: Conference Series. IOP Publishing, 2010. p. 012167. https://doi.org/10.1088/1742-6596/224/1/01216
  16. Pliquett U, Schönfeldt M, Barthel A, Frense D, Nacke T. Offset-free bidirectional current source for impedance measurement. In: Journal of Physics: Conference Series. IOP Publishing, 2010. p. 012009. https://doi.org/10.1088/1742-6596/224/1/01200
  17. Liu J, Qiao X, Wang M, Zhang W, Li G, Lin L. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system. Review of Scientific Instruments, 2014, 85.5: 055111.
  18. Pliquett U, Schönfeldt M, Barthel A, Frense D, Nacke T & Beckmann D. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy. Physiological measurement, 32(7), 927. https://doi.org/10.1088/0967-3334/32/7/S1
  19. Zhang F, Teng Z, Zhong H, Yang Y, Li J & Sang J (2018). Wideband mirrored current source design based on differential difference amplifier for electrical bioimpedance spectroscopy. Biomedical Physics & Engineering Express, 4(2), 025032. https://doi.org/10.1088/2057-1976/aaa9c
  20. Lamlih A, Freitas P, David-Grignot S (2018, May). Wideband Fully Differential Current Driver with Optimized Output Impedance for Bioimpedance Measurements. In Circuits and Systems (ISCAS), 2018 IEEE International Symposium on (pp. 1-5). IEEE. https://doi.org/10.1109/ISCAS.2018.835146
  21. Li X, Dong F & Fu Y. (2012, May). Analysis of constant-current characteristics for current sources. In Control and Decision Conference (CCDC), 2012 24th Chinese (pp. 2607-2612). IEEE. https://doi.org/10.1109/CCDC.2012.624441
  22. Rafiei-Naeini M & McCann H (2008). Low-noise current excitation sub-system for medical EIT. Physiological measurement, 29(6), S173. https://doi.org/10.1088/0967-3334/29/6/S1
Language: English
Page range: 59 - 71
Submitted on: May 15, 2018
Published on: Dec 19, 2018
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Vinicius G Sirtoli, Kaue F Morcelles, Volney C Vincence, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.