Have a personal or library account? Click to login
Mechanistic multilayer model for non-invasive bioimpedance of intact skin Cover

Mechanistic multilayer model for non-invasive bioimpedance of intact skin

By: B. Tsai,  E. Birgersson and  U. Birgersson  
Open Access
|Aug 2018

References

  1. Birgersson U, Birgersson E, Åberg P, Nicander I, Ollmar S. Noninvasive bioimpedance of intact skin: mathematical modeling and experiments. Physiological Measurement. 2010;32(1):1. https://doi.org/10.1088/0967-3334/32/l/001
  2. Birgersson UH, Birgersson E, Ollmar S. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical Analysis and Measurements. Journal of Electrical Bioimpedance. 2012;3(1):51–60. https://doi.org/10.5617/jeb.400
  3. Tsai B, Xue H, Birgersson E, Ollmar S, Birgersson UH. Analysis of a mechanistic model for non-invasive bio-impedance of intact skin. Journal of Electrical Bioimpedance. 2017; 8: 84-96. https://doi.org/10.5617/jeb.4826
  4. Martinsen OG, Grimnes S, Haug E. Measuring depth depends on frequency in electrical skin impedance measurements. Skin Research and Technology. 1999; 5(3): 179–181. https://doi.org/10.1111/j.1600-0846.1999.tb00128.x
  5. Jones D, Smallwood R, Hose D, Brown B, Walker D. Modelling of epithelial tissue impedance measured using three different designs of probe. Physiological Measurement. 2003; 24(2) 606–624. https://doi.org/10.1088/0967-3334/24/2/369
  6. Hartinger AE, Guardo R, Kokta V, Gagnon H. A 3-D hybrid finite element model to characterize the electrical behavior of cutaneous tissues. IEEE Transactions on Biomedical Engineering. 2010;57(4):780–789. https://doi.org/10.1109/TBME.2009.2036371
  7. Miller CE, Henriquez CS. Finite element analysis of bioelectric phenomena. Critical Reviews in Biomedical Engineering. 1989;18(3):207–233. http://europepmc.org/abstract/med/2286094
  8. Bédard C, Kröger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal. 2004;86(3):1829– 1842. https://doi.org/10.1016/S0006-3495(04)74250-2
  9. Birgersson U, Birgersson E, Nicander I, Ollmar S. A methodology for extracting the electrical properties of human skin. Physiological Measurement. 2013;34(6):723. https://doi.org/10.1088/0967-3334/34/6/723
  10. Asmar NH. Partial differential equations with Fourier series and boundary value problems. Prentice Hall. 2005, Ch. 8. https://www.pearson.com/us/higher-education/program/Asmar-Partial-Differential-Equations-and-Boundary-Value-Problems-with-Fourier-Series-2nd-Edition/PGM197997.html
  11. Birgersson U. Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurements. Inst för klinisk vetenskap, Dept of Clinical Science, Intervention and Technology; 2012. https://openarchive.ki.se/xmlui/handle/10616/41328
  12. Jackson JD. Appendix. In: Classical electrodynamics. Wiley; 1999. p. 780–781. http://as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.html
  13. COMSOL. COMSOL Multiphysics 5.0; 2016. Available from: https://www.comsol.com/.
  14. Matlab. MATLAB R2011; 2016. Available from: www.mathworks.com/products/matlab.
Language: English
Page range: 31 - 38
Submitted on: Mar 19, 2018
Published on: Aug 18, 2018
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 B. Tsai, E. Birgersson, U. Birgersson, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.