Have a personal or library account? Click to login
Performance investigation of non-volatile memories for energy-efficient on-chip L2 caches Cover

Performance investigation of non-volatile memories for energy-efficient on-chip L2 caches

Open Access
|Feb 2026

References

  1. “More Moore,” Int. Technol. Roadmap Semicond., pp. 1–52, 2015.
  2. S. Senni, L. Torres, G. Sassatelli, A. Gamatie, and B. Mussard, “Exploring MRAM Technologies for Energy Efficient Systems-On-Chip,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 6, no. 3, pp. 279–292, 2016.
  3. H. S. P. Wong and S. Salahuddin, “Memory leads the way to better computing,” Nat. Nanotechnol., vol. 10, no. 3, pp. 191–194, 2015.
  4. S. Mittal and J. S. Vetter, “A Survey of Software Techniques for Using Non-Volatile Memories for Storage and Main Memory Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1537–1550, 2016.
  5. Z. Guo, K. Cao, K. Shi, and W. Zhao, “Ultra-low power consumption spintronics devices,” in 2019 IEEE 13th International Conference on ASIC (ASICON), 2019, pp. 1–4.
  6. T. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, “Resistance random access memory,” Mater. Today, vol. 19, no. 5, pp. 254–264, Jun. 2016.
  7. F. Oboril, R. Bishnoi, M. Ebrahimi, and M. B. Tahoori, “Evaluation of hybrid memory technologies using SOTMRAM for on-chip cache hierarchy,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 34, no. 3, pp. 367–380, 2015.
  8. M. P. Komalan, C. Tenllado, J. I. G. Perez, F. T. Fernandez, and F. Catthoor, “System level exploration of a STT-MRAM based level 1 data-cache,” in Proceedings -Design, Automation and Test in Europe, DATE, 2015, vol. 2015-April, pp. 1311–1316.
  9. Z. Zhang, W. Wang, P. Yu, and Y. Jiang, “Cache performance of NV-STT-MRAM with scale effect and comparison with SRAM,” Int. J. Electron., vol. 109, no. 3, pp. 391–409, 2022.
  10. R. Saha, Y. P. Pundir, and P. Kumar Pal, “Comparative analysis of STT and SOT based MRAMs for last level caches,” J. Magn. Magn. Mater., vol. 551, p. 169161, Jun. 2022.
  11. T. Marinelli, J. I. G. Pérez, C. Tenllado, M. Komalan, M. Gupta, and F. Catthoor, “Microarchitectural Exploration of STT-MRAM Last-level Cache Parameters for Energy-efficient Devices,” ACM Trans. Embed. Comput. Syst., vol. 21, no. 1, pp. 1–20, 2022.
  12. X. Dong, N. P. Jouppi, and Y. Xie, “A circuit-architecture co-optimization framework for evaluating emerging memory hierarchies,” ISPASS 2013 - IEEE Int. Symp. Perform. Anal. Syst. Softw., pp. 140–141, 2013.
  13. S. Mittal and J. S. Vetter, “AYUSH: A Technique for Extending Lifetime of SRAM-NVM Hybrid Caches,” IEEE Comput. Archit. Lett., vol. 14, no. 2, pp. 115–118, Jul. 2015.
  14. R. Andrawis, A. Jaiswal, and K. Roy, “Design and Comparative Analysis of Spintronic Memories Based on Current and Voltage Driven Switching,” IEEE Trans. Electron Devices, vol. 65, no. 7, pp. 2682–2693, Jul. 2018.
  15. W. Kang, Y. Ran, Y. Zhang, W. Lv, and W. Zhao, “Modeling and Exploration of the Voltage-Controlled Magnetic Anisotropy Effect for the Next-Generation Low-Power and High-Speed MRAM Applications,” IEEE Trans. Nanotechnol., vol. 16, no. 3, pp. 387–395, 2017.
  16. X. Dong, C. Xu, N. Jouppi, and Y. Xie, “NVSim: A circuit-level performance, energy, and area model for emerging non-volatile memory,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 31, no. 7, pp. 994–1007, 2012.
  17. W. Kang, Y. Ran, Y. Zhang, W. Lv, and W. Zhao, “Modeling and Exploration of the Voltage-Controlled Magnetic Anisotropy Effect for the Next-Generation Low-Power and High-Speed MRAM Applications,” IEEE Trans. Nanotechnol., vol. 16, no. 3, pp. 387–395, May 2017.
  18. S. Shreya and B. K. Kaushik, “Modeling of Voltage-Controlled Spin-Orbit Torque MRAM for Multilevel Switching Application,” IEEE Trans. Electron Devices, vol. 67, no. 1, pp. 90–98, Jan. 2020.
  19. N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A Tool to Model Large Caches,” Symp. A Q. J. Mod. Foreign Lit., vol. HPL-2009-8, no. HPL-2009-85, pp. 0–24, 2009.
  20. I. Singh, B. Raj, M. Khosla, and B. K. Kaushik, “Comparative Analysis of Spintronic Memories for Low Power on-chip Caches,” SPIN, vol. 10, no. 04, p. 2050027, Dec. 2020.
  21. N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed. USA: Addison-Wesley Publishing Company, 2010.
  22. R. Bishnoi, M. Ebrahimi, F. Oboril, and M. B. Tahoori, “Architectural aspects in design and analysis of SOT-based memories,” Proc. Asia South Pacific Des. Autom. Conf. ASPDAC, pp. 700–707, 2014.
  23. T. Wang, J. Q. Xiao, and X. Fan, “Spin-Orbit Torques in Metallic Magnetic Multilayers: Challenges and New Opportunities,” Spin, vol. 7, no. 3. p. 1740013, 2017.
  24. R. Ramaswamy, J. M. Lee, K. Cai, and H. Yang, “Recent advances in spin-orbit torques: Moving towards device applications,” Appl. Phys. Rev., vol. 5, no. 3, p. 031107, Aug. 2018.
  25. H. D. Kallinatha, S. Rai, and B. Talawar, “A Detailed Study of SOT-MRAM as an Alternative to DRAM Primary Memory in Multi-Core Environment,” IEEE Access, vol. 12, pp. 7224–7243, 2024.
  26. X. Xu, H. Zhang, C. Jiang, J. Li, S. Lu, Y. Li, H. Du, X. Zhang, Z. Wang, K. Cao, et al., “Full reliability characterization of three-terminal SOT-MTJ devices and corresponding arrays,” IEEE Int. Reliab. Phys. Symp. Proc., vol. 2023-March, 2023.
  27. Y. Seo and K. W. Kwon, “Ultra High-Density SOT-MRAM Design for Last-Level On-Chip Cache Application,” Electronics, vol. 12, no. 20, Oct. 2023.
  28. K. Tian, B. Wu, K. Chen, and W. Liu, “High-Performance Co-Processing Architecture Using SOT-MRAM-Based In-memory Computing Scheme,” Int. Symp. Circuits Syst., 2025.
  29. P. Kumar, D. E. Shim, and A. Naeemi, “Comprehensive Device to System Co-Design for SOT-MRAM at the 7 nm Node,” IEEE J. Explor. Solid-State Comput. Devices Circuits, 2025.
  30. A. Sura and V. Nehra, “Performance Comparison of Single Level STT and SOT MRAM Cells for Cache Applications,” 2021 25th Int. Symp. VLSI Des. Test, VDAT 2021, pp. 1–4, Sep. 2021.
  31. G. Yu, “Two-terminal MRAM with a spin,” Nat. Electron., vol. 1, no. 9, pp. 496–497, Sep. 2018.
  32. D. Mondal, A. Singh, S. Bhatt, and R. Mishra, “Hybrid Spin-Orbit Torque/Spin-Transfer Torque-Based Multibit Cell for Area-Efficient Magnetic Random Access Memory,” IEEE Trans. Electron Devices, vol. 70, no. 12, pp. 6318–6323, Dec. 2023.
  33. S. Han, Q. Wang, and Y. Jiang, “MRAM-based Cache System Design and Policy Optimization for RISC-V Multi-core CPUs,” IEEE Trans. Magn., pp. 1–14, 2023.
  34. S. Han, Q. Wang, and Y. Jiang, “Hierarchical cache configuration based on hybrid SOT- and STT-MRAM,” AIP Adv., vol. 13, no. 2, Feb. 2023.
  35. S. Zou, X. Zhao, Y. Xue, J. Gao, Y. Cui, and J. Luo, “Extremely Low Switching Current STT-MRAM Device With Double Spin Transfer Torque,” IEEE Electron Device Lett., vol. 46, no. 4, pp. 584–587, 2025.
  36. L. Chang, Z. Wang, Y. Gao, W. Kang, Y. Zhang, and W. Zhao, “Evaluation of spin-Hall-assisted STT-MRAM for cache replacement,” Nanoscale Archit. (NANOARCH), 2016 IEEE/ACM Int. Symp., pp. 73–78, 2016.
  37. D. Ielmini and G. Pedretti, “Resistive Switching Random-Access Memory (RRAM): Applications and Requirements for Memory and Computing,” Chem. Rev., vol. 125, no. 12, pp. 5584–5625, Jun. 2025.
  38. S. Kang, W. Y. Cho, B. H. Cho, K. J. Lee, C. S. Lee, H. R. Oh, B. G. Choi, Q. Wang, H. J. Kim, M. H. Park, et al., “A 0.1-μm 1.8-V 256-Mb Phase-change Random Access Memory (PRAM) with 66-MHz synchronous burst-read operation,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 210–216, 2007.
  39. S. Raoux, Y.-C. Chen, G. W. Burr, D. Krebs, R. M. Shelby, S.-H. Chen, H.-L. Lung, C. H. Lam, C. T. Rettner, M. J. Breitwisch, and M. Salinga, “Phase-change random access memory: A scalable technology,” IBM J. Res. Dev., vol. 52, no. 4.5, pp. 465–479, 2010.
  40. Y. Li and K. N. Quader, “NAND Flash memory: Challenges and opportunities,” Computer (Long. Beach. Calif)., vol. 46, no. 8, pp. 23–29, 2013.
  41. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, “Emerging memories: resistive switching mechanisms and current status,” Reports Prog. Phys., vol. 75, no. 7, p. 76502, 2012.
DOI: https://doi.org/10.2478/jee-2026-0002 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 10 - 20
Submitted on: Oct 20, 2025
|
Published on: Feb 18, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2026 Inderjit Singh, Balwinder Raj, Mamta Khosla, Tajinder Kaur, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.