References
- M.D. Ortigueira, “Fractional Calculus for Scientists and Engineers”, Springer Science & Business Media: Portugal, 2011.
- M. Ortigueira and J. Machado, “Which Derivative?”, Fractal and Fractional, vol.1, no. 1, pp. 3, 2017.
- A. G. Radwan and A. M. Soliman, A.M., A. S. Elwakil, “First-order filters generalized to the fractional domain”, Journal of Circuits, Systems, and Computers, vol. 17, no. 1, pp. 55–66, 2008
- A. G. Radwan, K. N. Salama, “Passive and Active Elements Using Fractional Lβ Cα Circuit”, IEEE Trans. Circuit and Syst. I., vol. 58, no. 10, pp. 2388-2397, 2011
- A. S. Ali, A. G. Radwan, A.M. Soliman, “Fractional order Butterworth filter: active and passive realizations”, IEEE Journal on emerging and selected topics in Circuit and Systems., vol. 3, no. 3, pp. 346-354, 2013
- D. Kubanek, T. Freeborn, J. Koton, “Fractional-order band-pass filter design using fractional-characteristic specimen functions”, Microelectron Journal, vol 86, pp.77-86, 2019.
- J. Nako, C. Psychalinos, A. S. Elwakil, “One active element implementation of fractional-order Butterworth and Chebyshev filters”, AEU - International Journal of Electronics and Communications, vol. 168, 2023.
- G. Varshneya, N. Pandey,!!!x0020;S. Minaei, “CIM applications in fractional domain: Fractional-order universal filter and fractional-order oscillator”, AEU - International Journal of Electronics and Communications, vol. 156, 2022.
- R. Verma, N. Pandey, N. Pandey. “Electronically tunable fractional order filter”, Arab J Sci Eng; vol. 42, no.8, pp. 3409–22, 2017
- G. Kaur, A. Q. Ansari, M. S. Hashmi, “Analysis and investigation of CDBA based fractional-order filters”, Analog Integr Circ Sig Process, vol. 105, pp. 111–124, 2020.
- N. A. Khalila, L. A. Said,!!!x0020;A. G. Radwanc, A. M. Soliman, “Generalized two-port network based fractional order filters” AEU-International Journal of Electronics and Communications, vol. 104, pp. 128-146, 2019.
- R. Daryani, and B. Aggarwal, “Nature inspired algorithm based design of near ideal fractional order low pass Chebyshev filters and their realization using OTAs and CCII”, Integration, Vol. 97, 2024.
- R. Daryani, B. Aggarwal, “Designing of CCII-Based Fractional Order Inverse Chebyshev Filters Using Gray Wolf Optimization Approach”. IETE Journal of Research, vol 70. No. 9, pp. 7484-7494, 2024.
- S. K. Mishra, D. K. Upadhyay, M. Gupta, “An approach to improve the performance of fractional-order sinusoidal oscillators”, Chaos, Solitons & Fractals, Vol. 116, pp.126-135, 2018.
- R. Daryani, B. Aggarwal, “Designing of a Tunable Fractional Order Chebyshev High Pass Filter Using Particle Swarm Optimization”, Advanced Production and Industrial Engineering, vol. 27, pp. 123 – 129, 2022.
- S. K. Mishra, D. K. Upadhyay, M. Gupta, “Compact design of fractional order LC oscillator,” 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, pp. 1-4, 2019,
- S. K. Mishra, M. Gupta, D. K. Upadhyay, “Design and implementation of DDCC-based fractional-order oscillator”, International Journal of Electronics, vol. 106, no.4, pp.581–598. 2018.
- J. Satansup, and W. Tangsrirat, “Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors”, Microelectronics Journal, Vol. 45, Issue 6, pp. 613-618, 2014.
- D. Prasad, M. Kumar, Md. W. Akram, “Current mode fractional order filters using VDTAs with Grounded capacitors”, International Journal of Electronics and Telecommunications, Vol. 65, no. 1, PP. 11-17, 2019.
- P. Rani, R. Pandey, “Voltage differencing transconductance amplifier based fractional order multiple input single output universal filter”, Solid State Electronics Letters, Vol. 1, Issue 2, Pages 110-118, 2019.
- J. Srivastava, “VDTA based Fractional Order Universal Filter,” 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 2020, pp. 1-6,
- A. G. Radwan, A. M. Soliman, A. S. Elwakil, A. Sedeek, “On the stability of linear systems with fractional-order elements”, Chaos, Solitons & Fractals, Vol. 40, Issue 5, pp. 2317-2328, 2009.
- I. Petras, “Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation”, Springer Berlin, Heidelberg. 2011.