Have a personal or library account? Click to login
A wide power dynamic range CMOS rectifier with 85.5% peak efficiency and −19.1 dBm sensitivity for radio frequency energy harvesting Cover

A wide power dynamic range CMOS rectifier with 85.5% peak efficiency and −19.1 dBm sensitivity for radio frequency energy harvesting

By: Rui Wang,  Jian Liu,  Kang Zeng and  Di Luo  
Open Access
|Aug 2025

References

  1. D. S. Truesdell, J. Boley, A. Wokhlu, A. Gravel, D. D. Wentzloff and B. H. Calhoun, “Modeling and Design of Cold-Start Charge Pumps for Photovoltaic Energy Harvesters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 7 0, no. 11, pp. 4334-4345, 2023, doi: 10.1109/TCSI.2023.3306308.
  2. N. Wang, J. Tang, H.-S. Shan, H.-Z. Jia, R.-L. Peng and L. Zuo, “Efficient Power Conversion Using a PV-PCM-TE System Based on a Long Time Delay Phase Change with Concentrating Heat,” IEEE Transactions on Power Electronics, vol. 38, no. 9, pp. 10729-10738, 2023, doi: 10.1109/TPEL.2023.3283301.
  3. T.-H. Lin, J. Bito, J. G. D. Hester, J. Kimionis, R. A. Bahr and M. M. Tentzeris, “On-Body Long-Range Wireless Backscatteri ng Sensing System Using Inkjet-/3-D-Printed Flexible Ambient RF Energy Harvesters Capable of Simultaneous DC and Harmonics Generation,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 12, pp. 5389-5400, 2017, doi: 10.1109/TMTT.2017.2768033.
  4. T.-W. Hsu, H.-H. Wu, D.-L. Tsai and C.-L. Wei, “Photovoltaic Energy Harvester with Fractional Open-Circuit Voltage Based Maximum Power Point Tracking Circuit,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 257-261, 2019, doi: 10.1109/TCSII.2018.2838672.
  5. Z. Xu et al., “A 30% Efficient High-Output Voltage Fully Integrated Self-Biased Gate RF Rectifier Topology for Neural Implants,” IEEE Journal of Solid-State Circuits, vol. 57, no. 11, pp. 3324-3335, 2022, doi: 10.1109/JSSC.2022.3180633.
  6. K. Niotaki et al., “RF Energy Harvesting and Wireless Power Transfer for Energy Autonomous Wireless Devices and RFIDs,” IEEE Journal of Microwaves, vol. 3, no. 2, pp. 763-782, 2023, doi: 10.1109/JMW.2023.3255581.
  7. K. K. P. Churchill et al., “A Reconfigurable CMOS Stack Rectifier With 22.8-dB Dynamic Range Achieving 47.91% Peak PCE for IoT/WSN Application,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 10, pp. 1619-1623, 2023, doi. 10.1109/TVLSI.2023.3299075.
  8. K. Zheng, Y. Hou, X. Wang and Y. Liu, “A Single-Stage Dual-Output Regulating Rectifier with Sequential Pulse Frequency Modulation Control for Wireless Biomedical Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 10, pp. 4566-4570, 2024, doi: 10.1109/TCSII.2024.3396086.
  9. A. C. C. Chun, H. Ramiah and S. Mekhilef, “Wide Power Dynamic Range CMOS RF-DC Rectifier for RF Energy Harvesting System: A Review,” IEEE Access, vol. 10, pp. 23948-23963, 2022, doi: 10.1109/ACCESS.2022.3155240.
  10. J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE Journal of Solid-State Circuits, vol. 11, no. 3, pp. 374-378, 1976, doi: 10.1109/JSSC.1976.1050739.
  11. K. Kotani, A. Sasaki and T. Ito, “High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs,” IEEE Journal of Solid -State Circuits, vol. 44, no. 11, pp. 3011-3018, 2009, doi: 10.1109/JSSC.2009.2028955.
  12. A. Choo, Y. C. Lee, H. Ramiah, Y. Chen, P.-I. Mak and R. P. Martins, “A High-PCE Range-Extension CMOS Rectifier Employing Advanced Topology Amalgamation Technique for Ambient RF Energy Harvesting,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 10, pp. 3747-3 751, 2023, doi: 10.1109/TCSII.2023.3285977.
  13. A. S. Almansouri, J. Kosel and K. N. Salama, “A Dual-Mode Nested Rectifier for Ambient Wireless Powering in CMOS Tec hnology,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1754-1762, 2020, doi: 10.1109/TMTT.2020.2970913.
  14. A. S. Almansouri, M. H. Ouda and K. N. Salama, “A CMOS RF-to-DC Power Converter With 86% Efficiency and −19.2-dBm Sensitivity,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2409-2415, 2018, doi: 10.1109/TMTT.2017.2785251.
  15. S. M. Noghabaei, R. L. Radin, Y. Savaria and M. Sawan, “A High-Sensitivity Wide Input-Power-Range Ultra-Low-Power RF Energy Harvester for IoT Applications,” IEEE Trans actions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 440-451, 2022, doi: 10.1109/TCSI.2021.3099011.
  16. A. K. Moghaddam, J. H. Chuah, H. Ramiah, J. Ahmadian, P.-I. Mak and R. P. Martins, “A 73.9%-Efficiency CMOS Rectifier Using a Lower DC Feeding (LDCF) Self-Body-Biasing Technique for Far-Field RF Energy-Harvesting Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 4, pp. 992-1002, 2017, doi: 10.1109/TCSI.2016.2623821.
  17. Y. Mahnashi, A. Al-Khulaifi, and M. Al-Absi, “A New Wide Power Dynamic Range CMOS RF-to-DC Converter Using Body-Control Scheme,” Arabian Journal for Science and Engineering, vol. 48, no. 11, pp. 15553–15560, 2023, doi: 10.1007/s13369-023-08177-x.
  18. X. Liu et al., “Front-End Rectifier of Self-Compensation Matching with Parasitic Cancellation for Dual-Band RFID Tag,” Journal of Circuits, Systems and Computers, vol. 32, no. 18, 2023, doi: 10.1142/s0218126623503206.
  19. C. M. Pama and A. Silverio, “A Single-Stage, High-Efficiency Bulk-Biased CMOS Rectifier for Wireless Bioelectronic Power Transfer Applications,” 2023 IEEE Region 10 Symposium (TENSYMP), 2023, doi: 10.1109/TENSYMP55890.2023.10223655.
  20. G. Chong et al., “CMOS Cross-Coupled Differential-Drive Rectifier in Subthreshold Operation for Ambient RF Energy Harvesting – Model and Analysis,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 12, pp. 1942-1946, 2019, doi: 10.1109/TCSII.2019.2895659.
  21. B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill Education, 2000.
DOI: https://doi.org/10.2478/jee-2025-0033 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 324 - 332
Submitted on: Apr 9, 2025
|
Published on: Aug 6, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Rui Wang, Jian Liu, Kang Zeng, Di Luo, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.