References
- K. W. Cheng, W. W. Chen, and S. D. Yang, “A Low Power Sub-GHz Wideband LNA Employing Current-Reuse and Device-Reuse Positive Shunt-Feedback Technique,” IEEE microwave and wire-less components letters, vol. 32, no. 12, pp. 1455–1458, 2022. doi: 10.1109/LMWC.2022.3191116
- A. R. Hazeri, “Novel Ku/K-Band low-power LNAs with simultaneous input impedance and noise matching,” Wireless networks, vol. 29, no. 6, pp. 2733-2746, 2023. https://doi.org/10.1007/s11276-023-03346-0
- C. C. Yu, J. H. Yang, L. C. Su, H. Y. Lee, and C. C. Chen, “A Low-voltage and Low-power Low Noise Amplifier for Ku-band application,” 2011.
- Y. L. Wang, M. L. Her, M. W. Hsu, and W. Ko, “A Ku-band Low Noise Amplifier based on Transformer,” Advanced Materials Research, vol. 655-657, pp. 1550–1554, 2013. doi:10.4028/www.scientific.net/AMR.655-657.1550
- F. Soleimani and H. Shamsi, “Low-voltage and low-power Ku-band CMOS LNA using capacitive feedback,” Analog Integrated Circuits and Signal Processing, vol. 109, no. 2, pp. 435–447, 2021. https://doi.org/10.1007/s10470-021-01922-y
- J. Borremans, P. Wambacq, C. Soens, Y. Rolain, and M. Kuijk, “Low-area active-feedback low-noise amplifier design in scaled digital CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 11, pp. 2422–2433, 2008. doi: 10.1109/JSSC.2008.2005434
- Z. Jin, Z.-J. Chen, R. Wang, B. Li, and X.-L. Lin, “A 0.1-10GHz Ultra-Wideband High-Gain Low-Noise Amplifier for UWB receiver,” 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2021, pp. 1–3. doi: 10.1109/ICMMT52847.2021.9618471
- Y. Shim, C.-W. Kim, J. Lee, and S.-G. Lee, “Design of full band UWB common-gate LNA,” IEEE Microwave and wireless components letters, vol. 17, no. 10, pp. 721–723, 2007. doi: 10.1109/LMWC.2007.905633
- J.-H. C. Zhan and S. S. Taylor, “A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications,” 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers. IEEE, 2006, pp. 721–730. doi: 10.1109/ISSCC.2006.1696111
- K.-H. Chen and S.-I. Liu, “Inductorless wideband CMOS low-noise amplifiers using noise-canceling technique,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 2, pp. 305–314, 2011. doi: 10.1109/TCSI.2011.2162461
- A. Bozorg and R. B. Staszewski, “A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse,” IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 404–415, 2020. doi: 10.1109/JSSC.2020.3018680
- H. Yu, Y. Chen, C. C. Boon, C. Li, P.-I. Mak, and R. P. Martins, “A 0.044-mm 2 0.5-to-7-GHz resistor-plus-source-follower feedback noise-cancelling LNA achieving a flat NF of 3.3±0.45 dB,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 71–75, 2018. doi: 10.1109/TCSII.2018.2833553
- Z. Liu, C. C. Boon, X. Yu, C. Li, K. Yang, and Y. Liang, “A 0.061-mm2 1–11-GHz noise-canceling low-noise amplifier employing active feedforward with simultaneous current and noise reduction,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 6, pp. 3093–3106, 2021. doi: 10.1109/TMTT.2021.3061290
- R. Wang, C. Li, J. Zhang, S. Yin, W. Zhu, and Y. Wang, “A 18–44 GHz Low Noise Amplifier with Input Matching and Bandwidth Extension Techniques,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, pp. 1083–1086, 2022. doi: 10.1109/LMWC.2022.3163462
- C.-P. Chang, J.-H. Chen, and Y.-H. Wang, “A fully integrated 5 GHz low-voltage LNA using forward body bias technology,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, pp. 176–178, 2009. doi: 10.1109/LMWC.2009.2013745
- E. Kobal, T. Siriburanon, R. B. Staszewski, and A. Zhu, “A Compact, Low-Power, Low-NF, Millimeter-Wave Cascode LNA with Magnetic Coupling Feedback in 22-nm FD-SOI CMOS for 5G Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 4, pp. 1331–1335, 2022. doi: 10.1109/TCSII.2022.3224412
- M. Yaghoobi, M. Yavari, M. H. Kashani, H. Ghafoorifard, and S. Mirabbasi, “A 55–64-GHz low-power small-area LNA in 65-nm CMOS with 3.8-dB average NF and~ 12.8-dB power gain,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 128–130, 2019. doi: 10.1109/LMWC.2018.2890484
- J. F. Chang and Y. S. Lin, “3–9-GHz CMOS LNA Using Body Floating and Self-Bias Technique for Sub-6-GHz 5G communications,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 6, pp. 608–611, 2021. doi: 10.1109/LMWC.2021.3075279
- B. Razavi, “RF Microelectronics, 2nd Edition,” 2012.
- N. Peng and D. Zhao, “A Ku-band low-noise amplifier in 40-nm CMOS,” 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 2019, pp. 9–10. doi: 10.1109/ICTA48799.2019.9012868
- H.-W. Choi, S. Choi, and C.-Y. Kim, “Ultralow-noise figure and high gain Ku-band bulk CMOS low-noise amplifier with large-size transistor,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 1, pp. 60–63, 2020. doi: 10.1109/LMWC.2020.3037296
- H.-W. Choi, C.-Y. Kim, and S. Choi, “6.7–15.3 GHz, high-performance broadband low-noise amplifier with large transistor and two-stage broadband noise matching,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 8, pp. 949–952, 2021. doi: 10.1109/LMWC.2021.3092742