Have a personal or library account? Click to login
Pixel level vacuum packaging for single layer microbolometer detectors with on pixel lens Cover

Pixel level vacuum packaging for single layer microbolometer detectors with on pixel lens

Open Access
|Jul 2022

References

  1. [1] Yole Developpement “Thermal Imagers and Detectors”, Market and Technology Report, https://s3.i-micronews.com/uploads/2020/11/YDR20133b-Thermal-Imagers-and-Detectors-2020-Sample.pdf.
  2. [2] A. Voshell, N. Dhar, and M. M. Rana, “Materials for microbolometers: vanadium oxide or silicon derivatives”, Image Sensing Technologies: Materials, Devices, Systems, and Applications IV, p. 102090M, 2017, https://doi.org/10.1117/12.2263999.
  3. [3] A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: A review”, Reports on Progress in Physics, vol. 79, no. 4, p. 46501, 2016, https://doi.org/10.1088/0034-4885/79/4/046501.27007242
  4. [4] D. D. Bruyker and B. Xu, “Fabrication of vanadium oxide microbolometers on thin polyimide films”, Transducers and Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 62–65, 2013, https://doi.org/10.1109/Transducers.2013.6626701.
  5. [5] S. K. Ajmera, A. J. Syllaios, G. S. Tyber, M. F. Taylor, and R. E. Hollingsworth, “Amorphous silicon thin-films for uncooled infrared microbolometer sensors”, Infrared Technology and Applications XXXVI, p. 766012, 2010, https://doi.org/10.1117/12.850545.
  6. [6] A. G. U. Perera, Bolometers, Rijeka, Crotia: InTech, 2012, https://doi.org/10.5772/33000.
  7. [7] R. Ambrosio, M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, “An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys”, Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 7, no. 3-4, pp. 1180–1183, 2010, https://doi.org/10.1002/pssc.200982781..
  8. [8] S. Yoneoka et al, “ALD-metal uncooled bolometer”, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 676–679, 2011, https://doi.org/10.1109/MEMSYS.2011.5734515.
  9. [9] M. Y. Tanrikulu,. Yildizak, A. K. Okyay, O. Akar, A. Sara, and T. Akin, “Realization of Single Layer Microbolometer Detector Pixel Using ZnO Material”, IEEE Sensors Journal, vol. 20, no. 17, pp. 9677–9684, 2020, https://doi.org/10.1109/JSEN.2020.2992991.
  10. [10] L. Yu, Y. Guo, H. Zhu, M. Luo, P. Han, and X. Ji, “Low-cost microbolometer type infrared detectors”, Micromachines (Basel), vol. 11, no. 9, 2020, https://doi.org/10.3390/MI11090800.
  11. [11] Leonardo DRS, “Tenum 640 Thermal Camera Cores”, https://www.leonardodrs.com/commercial-infrared/products/uncooled-camera-modules/tenum-640/ (accessed Mar 29), 2021.
  12. [12] M. Michel et al, “Scalable nanotube-microbolometer technology with pixel pitches from 12 down to 6 μm”, Electro-Optical and Infrared Systems: Technology and Applications XVII, p. 1153704, Sep 2020, https://doi.org/10.1117/12.2573895.
  13. [13] Z. Gan, D. Huang, X. Wang, D. Lin, and S. Liu, “Getter free vacuum packaging for MEMS”, Sensors and Actuators, A: Physical, vol. 149, no. 1, pp. 159-164, 2009, https://doi.org/10.1016/j.sna.2008.10.014.
  14. [14] H. Hata et al, “Uncooled IRFPA with chip scale vacuum package”, Infrared Technology and Applications XXXII, p. 620619, 2006, https://doi.org/10.1117/12.673072.
  15. [15] T. Ito, T. Tokuda, M. Kimata, H. Abe, and N. Tokashiki, “Vacuum packaging technology for mass production of uncooled IRF-PAs”, Infrared Technology and Applications XXXV, p. 72982A, 2009, https://doi.org/10.1117/12.822707.
  16. [16] M. Kimata, M. T. Tokuda, A. Tsuchinaga, T. Matsumura, H. Abe, and N. Tokashiki, “Vacuum packaging technology for uncooled infrared sensor”, IEEJ Transactions on Electrical and Electronic Engineering, vol. 5, no. 2, pp. 175–180, 2010, https://doi.org/10.1002/tee.20514.
  17. [17] J. F. Brady III, et al, “Advances in amorphous silicon uncooled IR systems”, Infrared Technology and Applications XXV, p. 161, 1999, https://doi.org/10.1117/12.354517.
  18. [18] R. Gooch and T. Schimert, “Low-cost wafer-level vacuum packaging for MEMS”, MRS Bulletin, vol. 28, no. 1, pp. 55–59, 2003, https://doi.org/10.1557/mrs2003.18.
  19. [19] A. Hilton and D. S. Temple, “Wafer-level vacuum packaging of smart sensors”, Sensors (Switzerland), vol. 16, 2016, https://doi.org/10.3390/s16111819.513447827809249
  20. [20] A. Kennedy et al, “Advanced uncooled sensor product development”, Infrared Technology and Applications XLI, p. 94511C, 2015, https://doi.org/10.1117/12.2177462.
  21. [21] C. Li et al, “Low-cost uncooled VO x infrared camera development”, Infrared Technology and Applications XXXIX, p. 87041L, 2013, https://doi.org/10.1117/12.2019653.
  22. [22] L. Sengupta et al, “BAE systems’ SMART chip camera FPA development”, InfraredTechnology andApplications XLI, p. 94511B, 2015, https://doi.org/10.1117/12.2177011.
  23. [23] A. Astier, A. Arnaud, J.-L. Ouvrier-Buffet, J.-J. Yon, and E. Mottin, “Advanced packaging development for very low cost uncooled IRFPA”, Infrared Technology and Applications XXX, p. 412, 2004, https://doi.org/10.1117/12.544122.
  24. [24] E. Bercier, P. Robert, D. Pochic, J. L. Tissot, A. Arnaud, and J. J. Yon, “Far Infrared Imaging Sensor for mass production of Night Vision and Pedestrian Detection Systems”, Advanced Microsystems for Automotive Applications: Smart Systems for Safe, Sustainable and Networked Vehicles, pp. 301–312, 2012, https://doi.org/10.1007/978-3-642-29673-4_28.
  25. [25] D. P. Butler and Z. Celik-Butler, “A Device-Level Vacuum-Packaging Scheme for Microbolometers on Rigid and Flexible Substrates”, IEEE Sensors Journal, vol. 7, pp. 1012–1019, 2007, https://doi.org/10.1109/JSEN.2007.896560.
  26. [26] G. Dumont et al, “Pixel level packaging for uncooled IRFPA”, Infrared Technology and Applications XXXVII, p. 80121I, 2011, https://doi.org/10.1117/12.883852.
  27. [27] G. Dumontet et al, “Current progress on pixel level packaging for uncooled IRFPA”, Infrared Technology and Applications XXXVIII, pp. 83531I–83531I-8, 2012, https://doi.org/10.1117/12.919918.
  28. [28] K. Ikushima, A. Baba, M. Kyougoku, K. Sawada, and M. Ishida, “Fabrication and characterization of a pixel level micro vacuum package for infrared imager”, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 520–523, 2004, https://doi.org/10.1109/mems.2004.1290636.
  29. [29] G. J. Jeon, W. Y. Kim, and H. C. Lee, “Thin-film vacuum packaging based on porous anodic alumina (PAA) for infrared (IR) detection”, Proceedings of IEEE Sensors, pp. 3–6, 2012, https://doi.org/10.1109/ICSENS.2012.6411110.
  30. [30] W. Rabaud, et al, “Recent development in pixel level packaging for uncooled IRFPA”, Electro-Optical and Infrared Systems: Technology and Applications VII, p. 78340T, 2010, https://doi.org/10.1117/12.868462.
  31. [31] J. L. Tissot, P. Robert, A. Durand, S. Tinnes, E. Bercier, and A. Crastes, “Status of uncooled infrared detector technology at ULIS, France”, Defence Science Journal, vol. 63, no. 6, pp. 545–549, 2013, https://doi.org/10.14429/dsj.63.5753.
  32. [32] J. J. Yon et al, “Latest improvements in microbolometer thin film packaging: paving the way for low-cost consumer applications”, Infrared Technology and Applications XL, p. 90701N, 2014, https://doi.org/10.1117/12.2050378.
  33. [33] U. C. Boettiger and J. Li, “Controlling Lens Shape in a Microlens Array”, US 7, 218, 452 B2, 2007.
  34. [34] A. Piehl, J. R. Przybyla, A. L. Ghozeil, and E. T. Martin, “Self-Packaged Optical Interference Display Device Having Anti-Stiction Bumps, Integral Micro-Lens, and Reflection-Absorbing Layers”, US, 7, 370, 185 B2, 2008.
  35. [35] T. R. Schimert, T. P. Fagan, and A. J. Syllaios, “Pixel-Level Optical Elements for Uncooled Infrared Detector Devices”, US 8, 610, 070 B2, 2013.
  36. [36] E. Hecht, Optics, 4th ed. San Francisco: Addison-Wesley, 2002.
  37. [37] D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies”, Physical Review B, vol. 5, no. 8, pp. 3017–3029, 1972, https://doi.org/10.1103/PhysRevB.5.3017.
  38. [38] D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1 ≤ ω ≤ 4000 cm−1) refractive index values of silicon”, Journal of Applied Physics, vol. 97, no. 12, pp. 0–8, 2005, https://doi.org/10.1063/1.1923612.
  39. [39] M. Kimata, “Trends in small-format infrared array sensors”, Proceedings of IEEE Sensors, pp. 9–12, 2013, https://doi.org/10.1109/ICSENS.2013.6688495.
  40. [40] R. Yamazaki, A. Obana, and M. Kimata, “Microlens for uncooled infrared array sensor”, Electronics and Communications in Japan, vol. 96, pp. 1-8, 2013, https://doi.org/10.1002/ecj.11453.
  41. [41] D. W. Prather, “Design and application of subwavelength diffractive lenses for integration with infrared photodetectors”, Opt. Eng. vol. 38, p. 870, 1999, https://doi.org/10.1117/1.602256.
DOI: https://doi.org/10.2478/jee-2022-0027 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 203 - 208
Submitted on: Jun 4, 2022
Published on: Jul 11, 2022
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 M. Yusuf Tanrikulu, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.