Have a personal or library account? Click to login
Measuring the scientific impact of academic papers based on weighted heterogeneous scholarly network Cover

Measuring the scientific impact of academic papers based on weighted heterogeneous scholarly network

By: Jianlin Zhou,  Xinyue Dong,  Bin Cui and  Ying Fan  
Open Access
|Dec 2025

References

  1. Bai, X., Liu, H., Zhang, F., Ning, Z., Kong, X., Lee, I., & Xia, F. (2017). An overview on evaluating and predicting scholarly article impact. Information, 8, 73.
  2. Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1, 363-376.
  3. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30, 107-117.
  4. Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1, 8-15.
  5. Fiala, D. (2012). Time-aware PageRank for bibliographic networks. Journal of Informetrics, 6, 370-388.
  6. Fiala, D., Rousselot, F., & Jeˇzek. K. (2008). PageRank for bibliographic networks. Scientometrics, 76, 135-158.
  7. Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., Petersen, A. M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., & Barabási, A.-L. (2018). Science of science. Science, 359(6379), eaao0185. https://doi.org/10.1126/science.aao0185
  8. Glänzel, W., & Moed, H. F. (2002). Journal impact measures in bibliometric research. Scientometrics, 53, 171-193.
  9. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.
  10. Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., & Rafols, I. (2015). Bibliometrics: the Leiden Manifesto for research metrics. Nature, 520, 429-431.
  11. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102, 16569-16572.
  12. Jeon, J. H., & Jung, J. J. (2024). Article ranking with location-based weight in contextual citation network. Journal of Informetrics, 18, 101591.
  13. Jiang, X., Sun, X., Yang, Z., Zhuge, H., & Yao, J. (2016). Exploiting heterogeneous scientific literature networks to combat ranking bias: Evidence from the computational linguistics area. Journal of the Association for Information Science and Technology, 67, 1679-1702.
  14. Li, J., Yin, Y, Fortunato, S., & Wang, D. (2019). A dataset of publication records for Nobel laureates. Scientific Data, 6, 33.
  15. Liu, Z., Huang, H., Wei, X., & Mao, X. (2014). Tri-rank: An authority ranking framework in heterogeneous academic networks by mutual reinforce. In 2014 IEEE 26th International Conference on Tools with Artificial Intelligence (pp. 493-500). IEEE.
  16. Ma, N., Guan, J., & Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing & Management, 44, 800-810.
  17. Mariani, M. S., Medo, M., & Zhang, Y-C. (2016). Identification of milestone papers through time-balanced network centrality. Journal of Informetrics, 10, 1207-1223.
  18. Newman, M. E. (2009). The first-mover advantage in scientific publication. Europhysics Letters, 86, 68001.
  19. Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105, 17268-17272.
  20. Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B-CondensedMatter and Complex Systems, 4, 131-134.
  21. Sang, C.-Y, Chen, J.-J., & Liao, S.-G. (2025). DyHGTCR-Cas: Learning unified spatiotemporal features based on dynamic heterogeneous graph neural network for information cascade prediction. Information Processing & Management, 62, 104029.
  22. Sinatra, R., Wang, D., Deville, P., Song, C., & Barab’asi, A.-L. (2016). Quantifying the evolution of individual scientific impact. Science, 354, aaf5239.
  23. Vaccario, G., Xu, S., Mariani, M. S., & Medo, M. (2024). The quest for an unbiased scientific impact indicator remains open. Proceedings of the National Academy of Sciences, 121, e2410021121.
  24. Walker, D., Xie, H., Yan, K.-K., & Maslov, S. (2007). Ranking scientific publications using a model of network traffic. Journal of Statistical Mechanics: Theory and Experiment, 2007, P06010.
  25. Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10, 365-391.
  26. Wang, D., Song, C., & Barab’asi, A.-L. (2013). Quantifying long-term scientific impact. Science, 342, 127-132.
  27. Wang, S., Ma, Y, Mao, J., Bai, Y, Liang, Z., & Li, G. (2023). Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities. Journal of the Association for Information Science and Technology, 74, 150-167.
  28. Wang, Z., Qiao, X., Chen, J., Li, L., Zhang, H., Ding, J., & Chen, H. (2024). Exploring and evaluating the index for interdisciplinary breakthrough innovation detection. The Electronic Library, 42, 536-552.
  29. Wang, Z., Zhang, H., Chen, H., Feng, Y., & Ding, J. (2024). Content-based quality evaluation of scientific papers using coarse feature and knowledge entity network. Journal of King Saud University-Computer and Information Sciences, 36, 102119.
  30. Xia, F., Wang, W., Bekele, T. M., & Liu, H. (2017). Big scholarly data: A survey. IEEE Transactions on Big Data, 3, 18-35.
  31. Xiao, C., Sun, L., Han, J., & Qiao, Y. (2022). Heterogeneous academic network embedding based multivariate random-walk model for predicting scientific impact. Applied Intelligence, 52, 2171-2188.
  32. Yan, E., Ding, Y., & Sugimoto, C. R. (2011). P-rank: An indicator measuring prestige in heterogeneous scholarly networks. Journal of the American Society for Information Science and Technology, 62, 467-477.
  33. Yao, L., Wei, T., Zeng, A., Fan, Y., & Di, Z. (2014). Ranking scientific publications: the effect of nonlinearity. Scientific Reports, 4, 6663.
  34. Yu, D., Wang, W., Zhang, S., Zhang, W., & Liu, R. (2017). A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals. Scientometrics, 111, 521-542.
  35. Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports, 714-715 (16), 1-73.
  36. Zhang, F., & Wu, S. (2021). Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network. Scientometrics, 126, 7197-7222.
  37. Zhang, L., Fan, Y, Zhang, W., Zhang, S., & Yu, D. (2019). Measuring scientific prestige of papers with time-aware mutual reinforcement ranking model. Journal of Intelligent & Fuzzy Systems, 36, 1505-1519.
  38. Zhang, Y, Wang, M., Gottwalt, F., Saberi, M., & Chang, E. (2019). Ranking scientific articles based on bibliometric networks with a weighting scheme. Journal of Informetrics, 13, 616-634.
  39. Zhou, D., Orshanskiy, S. A., Zha, H., & Giles, C. L. (2007). Co-ranking authors and documents in a heterogeneous network. In Seventh IEEE International Conference on Data Mining (ICDM 2007) (pp. 739-744).
  40. Zhou, J., Shen, Z., & Wu, J. (2024). One-bit in, two-bit out: Network-based metrics of papers can be largely improved by including only the external citation counts without the citation relations. Systems, 12, 377.
  41. Zhou, J., Zeng, A., Fan, Y, & Di, Z. (2016). Ranking scientific publications with similarity-preferential mechanism. Scientometrics, 106, 805-816.
  42. Zhou, Y-B., Lü, L., & Li, M. (2012). Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity. New Journal of Physics, 14, 033033.
DOI: https://doi.org/10.2478/jdis-2025-0057 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 155 - 180
Submitted on: Jul 19, 2025
|
Accepted on: Nov 12, 2025
|
Published on: Dec 28, 2025
In partnership with: Paradigm Publishing Services

© 2025 Jianlin Zhou, Xinyue Dong, Bin Cui, Ying Fan, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.