References
- Bai, X., Liu, H., Zhang, F., Ning, Z., Kong, X., Lee, I., & Xia, F. (2017). An overview on evaluating and predicting scholarly article impact. Information, 8, 73.
- Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1, 363-376.
- Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30, 107-117.
- Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1, 8-15.
- Fiala, D. (2012). Time-aware PageRank for bibliographic networks. Journal of Informetrics, 6, 370-388.
- Fiala, D., Rousselot, F., & Jeˇzek. K. (2008). PageRank for bibliographic networks. Scientometrics, 76, 135-158.
- Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., Petersen, A. M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., & Barabási, A.-L. (2018). Science of science. Science, 359(6379), eaao0185. https://doi.org/10.1126/science.aao0185
- Glänzel, W., & Moed, H. F. (2002). Journal impact measures in bibliometric research. Scientometrics, 53, 171-193.
- Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.
- Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., & Rafols, I. (2015). Bibliometrics: the Leiden Manifesto for research metrics. Nature, 520, 429-431.
- Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102, 16569-16572.
- Jeon, J. H., & Jung, J. J. (2024). Article ranking with location-based weight in contextual citation network. Journal of Informetrics, 18, 101591.
- Jiang, X., Sun, X., Yang, Z., Zhuge, H., & Yao, J. (2016). Exploiting heterogeneous scientific literature networks to combat ranking bias: Evidence from the computational linguistics area. Journal of the Association for Information Science and Technology, 67, 1679-1702.
- Li, J., Yin, Y, Fortunato, S., & Wang, D. (2019). A dataset of publication records for Nobel laureates. Scientific Data, 6, 33.
- Liu, Z., Huang, H., Wei, X., & Mao, X. (2014). Tri-rank: An authority ranking framework in heterogeneous academic networks by mutual reinforce. In 2014 IEEE 26th International Conference on Tools with Artificial Intelligence (pp. 493-500). IEEE.
- Ma, N., Guan, J., & Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing & Management, 44, 800-810.
- Mariani, M. S., Medo, M., & Zhang, Y-C. (2016). Identification of milestone papers through time-balanced network centrality. Journal of Informetrics, 10, 1207-1223.
- Newman, M. E. (2009). The first-mover advantage in scientific publication. Europhysics Letters, 86, 68001.
- Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105, 17268-17272.
- Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B-CondensedMatter and Complex Systems, 4, 131-134.
- Sang, C.-Y, Chen, J.-J., & Liao, S.-G. (2025). DyHGTCR-Cas: Learning unified spatiotemporal features based on dynamic heterogeneous graph neural network for information cascade prediction. Information Processing & Management, 62, 104029.
- Sinatra, R., Wang, D., Deville, P., Song, C., & Barab’asi, A.-L. (2016). Quantifying the evolution of individual scientific impact. Science, 354, aaf5239.
- Vaccario, G., Xu, S., Mariani, M. S., & Medo, M. (2024). The quest for an unbiased scientific impact indicator remains open. Proceedings of the National Academy of Sciences, 121, e2410021121.
- Walker, D., Xie, H., Yan, K.-K., & Maslov, S. (2007). Ranking scientific publications using a model of network traffic. Journal of Statistical Mechanics: Theory and Experiment, 2007, P06010.
- Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10, 365-391.
- Wang, D., Song, C., & Barab’asi, A.-L. (2013). Quantifying long-term scientific impact. Science, 342, 127-132.
- Wang, S., Ma, Y, Mao, J., Bai, Y, Liang, Z., & Li, G. (2023). Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities. Journal of the Association for Information Science and Technology, 74, 150-167.
- Wang, Z., Qiao, X., Chen, J., Li, L., Zhang, H., Ding, J., & Chen, H. (2024). Exploring and evaluating the index for interdisciplinary breakthrough innovation detection. The Electronic Library, 42, 536-552.
- Wang, Z., Zhang, H., Chen, H., Feng, Y., & Ding, J. (2024). Content-based quality evaluation of scientific papers using coarse feature and knowledge entity network. Journal of King Saud University-Computer and Information Sciences, 36, 102119.
- Xia, F., Wang, W., Bekele, T. M., & Liu, H. (2017). Big scholarly data: A survey. IEEE Transactions on Big Data, 3, 18-35.
- Xiao, C., Sun, L., Han, J., & Qiao, Y. (2022). Heterogeneous academic network embedding based multivariate random-walk model for predicting scientific impact. Applied Intelligence, 52, 2171-2188.
- Yan, E., Ding, Y., & Sugimoto, C. R. (2011). P-rank: An indicator measuring prestige in heterogeneous scholarly networks. Journal of the American Society for Information Science and Technology, 62, 467-477.
- Yao, L., Wei, T., Zeng, A., Fan, Y., & Di, Z. (2014). Ranking scientific publications: the effect of nonlinearity. Scientific Reports, 4, 6663.
- Yu, D., Wang, W., Zhang, S., Zhang, W., & Liu, R. (2017). A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals. Scientometrics, 111, 521-542.
- Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports, 714-715 (16), 1-73.
- Zhang, F., & Wu, S. (2021). Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network. Scientometrics, 126, 7197-7222.
- Zhang, L., Fan, Y, Zhang, W., Zhang, S., & Yu, D. (2019). Measuring scientific prestige of papers with time-aware mutual reinforcement ranking model. Journal of Intelligent & Fuzzy Systems, 36, 1505-1519.
- Zhang, Y, Wang, M., Gottwalt, F., Saberi, M., & Chang, E. (2019). Ranking scientific articles based on bibliometric networks with a weighting scheme. Journal of Informetrics, 13, 616-634.
- Zhou, D., Orshanskiy, S. A., Zha, H., & Giles, C. L. (2007). Co-ranking authors and documents in a heterogeneous network. In Seventh IEEE International Conference on Data Mining (ICDM 2007) (pp. 739-744).
- Zhou, J., Shen, Z., & Wu, J. (2024). One-bit in, two-bit out: Network-based metrics of papers can be largely improved by including only the external citation counts without the citation relations. Systems, 12, 377.
- Zhou, J., Zeng, A., Fan, Y, & Di, Z. (2016). Ranking scientific publications with similarity-preferential mechanism. Scientometrics, 106, 805-816.
- Zhou, Y-B., Lü, L., & Li, M. (2012). Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity. New Journal of Physics, 14, 033033.