Have a personal or library account? Click to login
Measuring the scientific impact of academic papers based on weighted heterogeneous scholarly network Cover

Measuring the scientific impact of academic papers based on weighted heterogeneous scholarly network

By: Jianlin Zhou,  Xinyue Dong,  Bin Cui and  Ying Fan  
Open Access
|Dec 2025

Figures & Tables

Figure 1.

A schematic diagram of a weighted heterogeneous scholarly network.
A schematic diagram of a weighted heterogeneous scholarly network.

Figure 2.

The influence of dynamic parameter values α in WHNR algorithm on the evaluation results of paper impact.
The influence of dynamic parameter values α in WHNR algorithm on the evaluation results of paper impact.

Figure 3.

The overlap rate of the top 1% high-impact papers identified by the WHNR algorithm under different parameter values α.
The overlap rate of the top 1% high-impact papers identified by the WHNR algorithm under different parameter values α.

Figure 4.

The mean rank of 110 Nobel Prize-winning papers in the WHNR algorithm under different parameters.
The mean rank of 110 Nobel Prize-winning papers in the WHNR algorithm under different parameters.

Figure 5.

The mean rank of 110 Nobel Prize-winning papers under different mutual enhancement algorithms.
The mean rank of 110 Nobel Prize-winning papers under different mutual enhancement algorithms.

Figure 6.

The mean rank of 95 Nobel laureates under different mutually reinforcing ranking algorithms.
The mean rank of 95 Nobel laureates under different mutually reinforcing ranking algorithms.

The overlap ratio of the top 1% of scientists identified by different mutually reinforcing ranking algorithms_

AlgorithmsWHNRTAMRRPrankMutualRankMLMRJR
WHNR10.81130.61800.78430.7497
TAMRR0.811310.68090.81260.8472
Prank0.61800.680910.59010.6133
MutualRank0.78430.81260.590110.8691
MLMRJR0.74970.84720.61330.86911

The top 20 papers identified by different mutually reinforcing ranking algorithms_

DOIsYearRanking algorithms
WHNRMLMRJRMutualRankPrankTAMRR
10.1103/PhysRev.81.3851951188794524
10.1103/PhysRev.34.1293192925929914
10.1103/PhysRev. 136.B86419643602743
10.1103/PhysRev.73.6791948462435721
10.1103/PhysRev.47.7771935531632427
10.1103/PhysRevLett.77.386519966631,35414
10.1103/PhysRev. 131.276619637854014141
10.1103/PhysRev.65.1171944814147810
10.1103/RevModPhys.15.1194397918515
10.1103/PhysRev. 125.1067196210205010423
10.1103/PhysRev. 106.364195711652422327
10.1103/PhysRev. 109.19319581217415211
10.1103/PhysRev. 124.1866196113183821313
10.1103/PhysRevLett.19.12641967144515658
10.1103/PhysRev. 109.1492195815258216418
10.1103/PhysRev.43.80419331698370315
10.1103/PhysRev.46.10021934172,3331051516
10.1103/PhysRev. 108.11751957183461
10.1103/PhysRev. 140.A1133196519351542
10.1103/PhysRevB.23.504819812016539212

Journal rankings based on different mutually reinforcing ranking algorithms_

JournalsRanking algorithms
WHNRMLMRJRMutualRankPrankTAMRR
Physical Review Letters11111
Physical Review B22222
Physical Review D33433
Physical Review A44344
Physical Review C55665
Physical Review E66576
Review of Modern Physics77757
Physical Review Special Topics-Accelerators and Beams88888
Physical Review Special Topics-Physics Education Research99999

Hypothesis testing results_

HypothesisCorrelation Test
Correlation CoefficientP-value95% Confidence Interval
H10.39740.0010[0.3947, 0.4002]
H20.53410.0010[0.5317, 0.5362]
H30.59550.0010[0.5932, 0.5976]
H40.52950.0010[0.5265, 0.5323]
H50.22190.0010[0.2179, 0.2257]
H60.42480.0010[0.4214, 0.4286]
H70.72730.0130[0.0748, 1]
H80.73640.0140[0.1686, 0.9703]
H90.73600.0150[0.1336, 0.9721]

The overlap ratio of the top 1% papers identified by different mutually reinforcing ranking algorithms_

AlgorithmsWHNRTAMRRPrankMutualRankMLMRJR
WHNR10.79110.64770.58520.6254
TAMRR0.791110.61830.68030.7743
Prank0.64770.618310.38210.5178
MutualRank0.58520.68030.382110.6828
MLMRJR0.62540.77430.51780.68281

The top 20 scientists identified by different mutually reinforcing ranking algorithms_

AuthorsPaper countRanking algorithms
WHNRMLMRJRMutualRankPrankTAMRR
John C. Slater6614411
G. Breit17623633
Chen N. Yang10539879
John H. Van Vleck63436242012
M. Gell-Mann38519251415
Richard P. Feynman34626201313
Hans A. Bethe101777105
U. Fano838461818318
S. Weinberg133923156
Robert S. Mulliken651060623933
Philip W. Anderson138111182
Eugene P. Wigner4612201227
Julian S. Schwinger104136564
J. Bardeen79141511510
Taekoon D. Lee1891511171614
C. Kittel801617191911
James C. Phillips1951727284925
W. Kohn1151852228
Geoffrey F. Chew851922323631
Bertrand I. Halperin185201396316

The correlation between papers’ impact scores under different mutually reinforcing ranking algorithms_

AlgorithmsWHNRTAMRRPrankMutualRankMLMRJR
WHNR10.92770.72880.84540.8972
TAMRR0.927710.7310.93480.9777
Prank0.72880.73110.78360.7986
MutualRank0.84540.93480.783610.9492
MLMRJR0.89720.97770.79860.94921

The correlation between scientists’ impact scores under different mutually reinforcing ranking algorithms_

AlgorithmsWHNRTAMRRPrankMutualRankMLMRJR
WHNR10.89020.80770.91180.8502
TAMRR0.890210.93720.96380.9762
Prank0.80770.937210.88080.9276
MutualRank0.91180.96380.880810.9476
MLMRJR0.85020.97620.92760.94761
DOI: https://doi.org/10.2478/jdis-2025-0057 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 155 - 180
Submitted on: Jul 19, 2025
|
Accepted on: Nov 12, 2025
|
Published on: Dec 28, 2025
In partnership with: Paradigm Publishing Services

© 2025 Jianlin Zhou, Xinyue Dong, Bin Cui, Ying Fan, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.