Boyack, K. W., Patek, M., Ungar, L. H., Yoon, P., & Klavans, R. (2014). Classification of individual articles from all of science by research level. Journal of Informetrics, 8(1), 1–12.
Chen, S., Song, Y., Shu, F., & Larivière, V. (2022). Interdisciplinarity and impact: the effects of the citation time window. Scientometrics, 127(5), 2621–2642.
Cohan, A., Feldman, S., Beltagy, I., Downey, D., & Weld, D. S. (2020). Specter: Document-level representation learning using citation-informed transformers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2270–2282.
Frietsch, R., & Bührer-Topçu, S. (2022). Strukturen und Governance öffentlicher Finanzierung der außeruniversitären Forschungsorganisationen in Deutschland. Forschung. Politik-Strategie-Management, 15(1+2), S. 34–41
Frietsch, R., Gruber, S., Blind, K., & Neuhäusler, P. (2023). Erfassung und Analyse bibliometrischer Indikatoren 2023 im Rahmen des Pakt-Monitorings zum Pakt für Forschung und Innovation IV, Bericht im Auftrag des BMBF. Karlsruhe: Fraunhofer ISI.
Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855-864).
Leydesdorff, L., & Bornmann, L. (2016). The operationalization of “fields” as WoS subject categories (WC s) in evaluative bibliometrics: The cases of “library and information science” and “science & technology studies”. Journal of the Association for Information Science and Technology, 67(3), 707–714.
Leydesdorff, L., Wagner, C.S., & Bornmann, L. (2019). Diversity measurement: Steps towards the measurement of interdisciplinarity? Journal of Informetrics, 13(3), 904–905.
Leydesdorff, L., Wagner, C.S., & Bornmann, L. (2019). Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling Diversity, Relative Variety, and the Gini coefficient. Journal of Informetrics, 13(1), 255–264.
Ma, Y., & Uzzi, B. (2018). Scientific prize network predicts who pushes the boundaries of science. Proceedings of the National Academy of Sciences, 115(50), 12608–12615.
Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.
Rafols, I., & Leydesdorff, L. (2009). Content-based and algorithmic classifications of journals: Perspectives on the dynamics of scientific communication and indexer effects. Journal of the American Society for Information Science and Technology, 60(9), 1823–1835.
Shu, F., Julien, C. A., Zhang, L., Qiu, J., Zhang, J., & Larivière, V. (2019). Comparing journal and paper level classifications of science. Journal of Informetrics, 13(1), 202–225.
Shu, F., Ma, Y., Qiu, J., & Larivière, V. (2020). Classifications of science and their effects on bibliometric evaluations. Scientometrics, 125, 2727–2744.
Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707–719.
Tong, S., Chen, F., Yang, L., & Shen, Z. (2023). Novel utilization of a paper-level classification system for the evaluation of journal impact: An update of the CAS Journal Ranking. Quantitative Science Studies, 4(4), 960–975.
Wang, Q., & Waltman, L. (2016). Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus. Journal of informetrics, 10(2), 347–364.
Zhang, L., & Leydesdorff, L. (2021). The scientometric measurement of interdisciplinarity and diversity in the research portfolios of Chinese universities. Journal of data and information science, 6(4), 13–35.
Zhang, L., Rousseau, R., & Glänzel, W. (2016). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the Association for Information Science and Technology, 67(5), 1257–1265.