References
- Asif, R., & Islam, M. A. (2016, April). Finding most collaborating mathematicians a co-author network analysis of mathematics domain. In 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube) (pp. 289–293). IEEE.
- Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3-4), 590–614.
- Barber, M. J., & Scherngell, T. (2013). Is the European R&D network homogeneous? Distinguishing relevant network communities using graph theoretic and spatial interaction modelling approaches. Regional studies, 47(8), 1283–1298.
- Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 70(6), 066111.
- Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695, 1–9.
- Danon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, 2005(09), P09008.
- Falih, I., Grozavu, N., Kanawati, R., & Bennani, Y. (2018). Anca: Attributed network clustering algorithm. In Complex Networks & Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth International Conference on Complex Networks and Their Applications) (pp. 241–252). Springer International Publishing.
- Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75–174.
- Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659(11), 1–44.
- Gaskó, N., Lung, R. I., & Suciu, M. A. (2016). A new network model for the study of scientific collaborations: Romanian computer science and mathematics co-authorship networks. Scientometrics, 108, 613–632.
- Groeneveld, R. A., & Meeden, G. (1984). Measuring skewness and kurtosis. Journal of the Royal Statistical Society Series D: The Statistician, 33(4), 391–399.
- Grossman, J. W. (2002). Patterns of collaboration in mathematical research. SIAM News, 35(9), 8–9.
- Guimerà, R., Uzzi, B., Spiro, J., & Amaral, L. A. N. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722), 697–702.
- Harris, M. J., Murtfeldt, R., Wang, S., Mordecai, E. A., & West, J. D. (2023). The role and influence of perceived experts in an anti-vaccine misinformation community. medRxiv.
- Huang, Y., Cheng, X., Tian, C., Jiang, X., Ma, L., & Ma, Y. (2024). Talent hat, cross-border mobility, and career development in China. Quantitative Science Studies, 1–24.
- Huang, Y., Tian, C., & Ma, Y. (2023). Practical operation and theoretical basis of difference-indifference regression in science of science: The comparative trial on the scientific performance of Nobel laureates versus their coauthors. Journal of Data and Information Science, 8(1), 29–46.
- Izquierdo, I., Vessuri, H., & Gonzalez, R. (2018). Scientific collaboration networks of mathematicians from the former soviet union in the global south. Journal of Education and Human Development, 7(4), 83–93.
- Klein, J. T. (2005). Interdisciplinary teamwork: The dynamics of collaboration and integration. In S. J. Derry, C. D. Schunn, & M. A. Gernsbacher (Eds.), Interdisciplinary Collaboration: An Emerging Cognitive Science (1st ed., pp. 23–50). NY: Psychology Press.
- Laudel, G. (2001). Collaboration, creativity and rewards: Why and how scientists collaborate. International Journal of Technology Management, 22(7-8), 762–781.
- Liu, F., Xue, S., Wu, J., Zhou, C., Hu, W., Paris, C., Nepal, S., Yang, J., & Yu, P. S. (2020). Deep learning for community detection: progress, challenges and opportunities. arXiv preprint arXiv:2005.08225.
- Mao, J., Cao, Y., Lu, K., & Li, G. (2017). Topic scientific community in science: A combined perspective of scientific collaboration and topics. Scientometrics, 112, 851–875.
- Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409.
- Newman, M. E. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(suppl_1), 5200–5205.
- Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In T. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (NIPS 2001).
- Potts, J., Hartley, J., Montgomery, L., Neylon, C., & Rennie, E. (2017). A journal is a club: A new economic model for scholarly publishing. Prometheus, 35(1), 75–92.
- Priem, J., Piwowar, H., & Orr, R. (2022). OpenAlex: A fully-open index of scholarly works, authors, venues, institutions, and concepts. arXiv preprint arXiv:2205.01833.
- Qin, J., Lancaster, F. W., & Allen, B. (1997). Types and levels of collaboration in interdisciplinary research in the sciences. Journal of the American Society for information Science, 48(10), 893–916.
- Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 74(1), 016110.
- Rosvall, M., Axelsson, D., & Bergstrom, C. T. (2009). The map equation. The European Physical Journal Special Topics, 178(1), 13–23.
- Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688–688.
- Singh, H., Becattini, N., Cascini, G., & Škec, S. (2021). How familiarity impacts influence in collaborative teams? Proceedings of the Design Society, 1, 1735–1744.
- Somerfield, P. J., Clarke, K. R., & Warwick, R. M. (2008). Simpson index. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 3252–3255). Academic Press.
- Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41(1), 643–681.
- Tomassini, M., & Luthi, L. (2007). Empirical analysis of the evolution of a scientific collaboration network. Physica A: Statistical Mechanics and its Applications, 385(2), 750–764.
- Van Nguyen, M., Kirley, M., & García-Flores, R. (2012). Community evolution in a scientific collaboration network. 2012 IEEE congress on evolutionary computation,
- Williams, K., Michalska, S., Cohen, E., Szomszor, M., & Grant, J. (2023). Exploring the application of machine learning to expert evaluation of research impact. Plos one, 18(8), e0288469.
- Xu, H., Liu, M., Bu, Y., Sun, S., Zhang, Y., Zhang, C., Acuna, D. E., Gray, S., Meyer, E., & Ding, Y. (2024). The impact of heterogeneous shared leadership in scientific teams. Information Processing & Management, 61(1), 103542.
- Yu, S., Xia, F., Zhang, C., Wei, H., Keogh, K., & Chen, H. (2021). Familiarity-based collaborative team recognition in academic social networks. IEEE Transactions on Computational Social Systems, 9(5), 1432–1445.
- Zhang, X.-S., Wang, R.-S., Wang, Y., Wang, J., Qiu, Y., Wang, L., & Chen, L. (2009). Modularity optimization in community detection of complex networks. Europhysics Letters, 87(3), 38002.
- Zhang, Y., Pan, R., Wang, H., & Su, H. (2023). Community detection in attributed collaboration network for statisticians. Stat, 12(1), e507.
- Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical clustering algorithms for document datasets. Data mining and knowledge discovery, 10, 141–168.