Have a personal or library account? Click to login
Community detection on elite mathematicians’ collaboration network Cover

Community detection on elite mathematicians’ collaboration network

Open Access
|Nov 2024

References

  1. Asif, R., & Islam, M. A. (2016, April). Finding most collaborating mathematicians a co-author network analysis of mathematics domain. In 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube) (pp. 289–293). IEEE.
  2. Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3-4), 590–614.
  3. Barber, M. J., & Scherngell, T. (2013). Is the European R&D network homogeneous? Distinguishing relevant network communities using graph theoretic and spatial interaction modelling approaches. Regional studies, 47(8), 1283–1298.
  4. Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 70(6), 066111.
  5. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695, 1–9.
  6. Danon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, 2005(09), P09008.
  7. Falih, I., Grozavu, N., Kanawati, R., & Bennani, Y. (2018). Anca: Attributed network clustering algorithm. In Complex Networks & Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth International Conference on Complex Networks and Their Applications) (pp. 241–252). Springer International Publishing.
  8. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75–174.
  9. Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659(11), 1–44.
  10. Gaskó, N., Lung, R. I., & Suciu, M. A. (2016). A new network model for the study of scientific collaborations: Romanian computer science and mathematics co-authorship networks. Scientometrics, 108, 613–632.
  11. Groeneveld, R. A., & Meeden, G. (1984). Measuring skewness and kurtosis. Journal of the Royal Statistical Society Series D: The Statistician, 33(4), 391–399.
  12. Grossman, J. W. (2002). Patterns of collaboration in mathematical research. SIAM News, 35(9), 8–9.
  13. Guimerà, R., Uzzi, B., Spiro, J., & Amaral, L. A. N. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722), 697–702.
  14. Harris, M. J., Murtfeldt, R., Wang, S., Mordecai, E. A., & West, J. D. (2023). The role and influence of perceived experts in an anti-vaccine misinformation community. medRxiv.
  15. Huang, Y., Cheng, X., Tian, C., Jiang, X., Ma, L., & Ma, Y. (2024). Talent hat, cross-border mobility, and career development in China. Quantitative Science Studies, 1–24.
  16. Huang, Y., Tian, C., & Ma, Y. (2023). Practical operation and theoretical basis of difference-indifference regression in science of science: The comparative trial on the scientific performance of Nobel laureates versus their coauthors. Journal of Data and Information Science, 8(1), 29–46.
  17. Izquierdo, I., Vessuri, H., & Gonzalez, R. (2018). Scientific collaboration networks of mathematicians from the former soviet union in the global south. Journal of Education and Human Development, 7(4), 83–93.
  18. Klein, J. T. (2005). Interdisciplinary teamwork: The dynamics of collaboration and integration. In S. J. Derry, C. D. Schunn, & M. A. Gernsbacher (Eds.), Interdisciplinary Collaboration: An Emerging Cognitive Science (1st ed., pp. 23–50). NY: Psychology Press.
  19. Laudel, G. (2001). Collaboration, creativity and rewards: Why and how scientists collaborate. International Journal of Technology Management, 22(7-8), 762–781.
  20. Liu, F., Xue, S., Wu, J., Zhou, C., Hu, W., Paris, C., Nepal, S., Yang, J., & Yu, P. S. (2020). Deep learning for community detection: progress, challenges and opportunities. arXiv preprint arXiv:2005.08225.
  21. Mao, J., Cao, Y., Lu, K., & Li, G. (2017). Topic scientific community in science: A combined perspective of scientific collaboration and topics. Scientometrics, 112, 851–875.
  22. Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409.
  23. Newman, M. E. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(suppl_1), 5200–5205.
  24. Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In T. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (NIPS 2001).
  25. Potts, J., Hartley, J., Montgomery, L., Neylon, C., & Rennie, E. (2017). A journal is a club: A new economic model for scholarly publishing. Prometheus, 35(1), 75–92.
  26. Priem, J., Piwowar, H., & Orr, R. (2022). OpenAlex: A fully-open index of scholarly works, authors, venues, institutions, and concepts. arXiv preprint arXiv:2205.01833.
  27. Qin, J., Lancaster, F. W., & Allen, B. (1997). Types and levels of collaboration in interdisciplinary research in the sciences. Journal of the American Society for information Science, 48(10), 893–916.
  28. Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 74(1), 016110.
  29. Rosvall, M., Axelsson, D., & Bergstrom, C. T. (2009). The map equation. The European Physical Journal Special Topics, 178(1), 13–23.
  30. Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688–688.
  31. Singh, H., Becattini, N., Cascini, G., & Škec, S. (2021). How familiarity impacts influence in collaborative teams? Proceedings of the Design Society, 1, 1735–1744.
  32. Somerfield, P. J., Clarke, K. R., & Warwick, R. M. (2008). Simpson index. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 3252–3255). Academic Press.
  33. Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41(1), 643–681.
  34. Tomassini, M., & Luthi, L. (2007). Empirical analysis of the evolution of a scientific collaboration network. Physica A: Statistical Mechanics and its Applications, 385(2), 750–764.
  35. Van Nguyen, M., Kirley, M., & García-Flores, R. (2012). Community evolution in a scientific collaboration network. 2012 IEEE congress on evolutionary computation,
  36. Williams, K., Michalska, S., Cohen, E., Szomszor, M., & Grant, J. (2023). Exploring the application of machine learning to expert evaluation of research impact. Plos one, 18(8), e0288469.
  37. Xu, H., Liu, M., Bu, Y., Sun, S., Zhang, Y., Zhang, C., Acuna, D. E., Gray, S., Meyer, E., & Ding, Y. (2024). The impact of heterogeneous shared leadership in scientific teams. Information Processing & Management, 61(1), 103542.
  38. Yu, S., Xia, F., Zhang, C., Wei, H., Keogh, K., & Chen, H. (2021). Familiarity-based collaborative team recognition in academic social networks. IEEE Transactions on Computational Social Systems, 9(5), 1432–1445.
  39. Zhang, X.-S., Wang, R.-S., Wang, Y., Wang, J., Qiu, Y., Wang, L., & Chen, L. (2009). Modularity optimization in community detection of complex networks. Europhysics Letters, 87(3), 38002.
  40. Zhang, Y., Pan, R., Wang, H., & Su, H. (2023). Community detection in attributed collaboration network for statisticians. Stat, 12(1), e507.
  41. Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical clustering algorithms for document datasets. Data mining and knowledge discovery, 10, 141–168.
DOI: https://doi.org/10.2478/jdis-2024-0026 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 1 - 23
Submitted on: Jul 25, 2023
Accepted on: Nov 22, 2023
Published on: Nov 19, 2024
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Yurui Huang, Zimo Wang, Chaolin Tian, Yifang Ma, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.