Have a personal or library account? Click to login
A comparison of model choice strategies for logistic regression Cover

A comparison of model choice strategies for logistic regression

By: Markku Karhunen  
Open Access
|Feb 2024

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov, F. Csaki (Eds.), Proceedings of the Second International Symposium on Information Theory (pp. 267-281). Budapest: Akademiai Kiado.
  2. Ayers, K. L., Cordell, H. J. (2010). SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genetic Epidemiology, 34(8), 879-891.
  3. Bejaei, M., Wiseman, K., Cheng, K. M. (2015). Developing logistic regression models using purchase attributes and demographics to predict the probability of purchases of regular and specialty eggs. British Poultry Science, 56(4), 425-435.
  4. Buse, A. (1982). The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note. The American Statistician, 36(3a), 153-157.
  5. Cavanaugh, J. E. (1997). Unifying the derivations for the Akaike and corrected Akaike information criteria. Statistics Probability Letters, 33(2), 201-208.
  6. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. (2nd ed). Routledge.
  7. Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1.
  8. Hoerl, A. E., Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.
  9. Hurvich, C. M., Tsai, C-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297-307.
  10. Imori, S., Yanagihara, H., Wakaki, H. (2014). Simple formula for calculating bias-corrected AIC in generalized linear models. Scandinavian Journal of Statistics, 41(2), 535-555.
  11. Karhunen, M. (2019). Algorithmic sign prediction and covariate selection across eleven international stock markets. Expert Systems with Applications, 115, 256-263.
  12. McGullagh, P., Nelder J. A. (1989). GeneralizedLinearModels. (2nd ed). Chapman Hall/CRC.
  13. McQuarrie, A. D. (1999). A small-sample correction for the Schwarz SIC model selection criterion. Statistics Probability Letters, 44(1) 79-86.
  14. Qian, G. Q., Field, C. (2002). Using MCMC for logistic regression model selection involving large number of candidate models. In Fang, KT., Niederreiter, H., Hickernell, F.J. (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer, Berlin, Heidelberg.
  15. Qian, G. Q., Künsch, H. R. (1998). Some notes on Rissanen’s stochastic complexity. IEEE Transactions on Information Theory, 44(2), 782-786.
  16. Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465-471.
  17. Saha, T. K., Pal, S. (2019). Exploring physical wetland vulnerability of Atreyee river basin in India and Bangladesh using logistic regression and fuzzy logic approaches. Ecological Indicators, 98, 251-265.
  18. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 461-464.
  19. Sugiura, N. (1978). Further analysis of the data by Akaike’s information criterion and the finite corrections. Communications in Statistics-Theory and Methods, 7(1), 13-26.
  20. Tay, J. K., Narasimhan, B., Hastie, T. (2023). Elastic net regularization paths for all generalized linear models. Journal of Statistical Software, 106.
  21. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288.
  22. Zhang, Y Y, Zhou, X. B., Wang, Q. Z., Zhu, X. Y (2017). Quality of reporting of multivariable logistic regression models in Chinese clinical medical journals. Medicine, 96(21).
  23. Zhou, X. B., Wang, X. D., Dougherty, E. R. (2005). Gene selection using logistic regressions based on AIC, BIC and MDL criteria. New Mathematics and Natural Computation, 1(01), 129-145.
  24. Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418-1429.
DOI: https://doi.org/10.2478/jdis-2024-0001 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 37 - 52
Submitted on: Oct 11, 2023
Accepted on: Dec 22, 2023
Published on: Feb 6, 2024
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Markku Karhunen, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.