Have a personal or library account? Click to login
A comparison of model choice strategies for logistic regression Cover

A comparison of model choice strategies for logistic regression

By: Markku Karhunen  
Open Access
|Feb 2024

Figures & Tables

Figure 1.

Comparison of model comparison methods. The methods tried are 1. Wald’s tests, 2. likelihoodratio test, 3. AIC, 4. BIC, 5. AICc, 6. BICc, 7. MDL, 8. Lasso and 9. Adaptive Lasso. The sampling variation is minimal in this image, with confidence intervals smaller than the crosses. For distinction of sensitivity-1 and sensitivity-2, see Methods.
Comparison of model comparison methods. The methods tried are 1. Wald’s tests, 2. likelihoodratio test, 3. AIC, 4. BIC, 5. AICc, 6. BICc, 7. MDL, 8. Lasso and 9. Adaptive Lasso. The sampling variation is minimal in this image, with confidence intervals smaller than the crosses. For distinction of sensitivity-1 and sensitivity-2, see Methods.

Figure 2.

Optimal methods. x axis is the relative weight of type II errors (failures to detect true covariates). The weight of type I errors (choosing noise covariates) is set to one. The highest curve corresponds to n=100, whereas the middle curve and the lowest curve correspond to n=350 and n=1,000, respectively. The numbers under the line segments indicate the optimal methods.
Optimal methods. x axis is the relative weight of type II errors (failures to detect true covariates). The weight of type I errors (choosing noise covariates) is set to one. The highest curve corresponds to n=100, whereas the middle curve and the lowest curve correspond to n=350 and n=1,000, respectively. The numbers under the line segments indicate the optimal methods.

Results of the main model comparison_

Method 1Method 2Method 3Method 4Method 5Method 6Method 7Method 8Method 9
n=100Spec.79 [.004].78 [.004].51 [.005].89 [.003].54 [.005].91 [.003].00 [.000].66 [.005].53 [.005]
Sens1.31 [.005].27 [.004].33 [.005].28 [.004].34 [.005].27 [.004].01 [.001].17 [.004].20 [.004]
Sens2.38 [.005].42 [.005].56 [.005].31 [.005].54 [.005].29 [.005].86 [.003].53 [.005].58 [.005]
n=350Spec.78 [.004].80 [.004].51 [.005].95 [.002].52 [.005].95 [.002].00 [.000].67 [.005].54 [.005]
Sens1.61 [.005].56 [.005].51 [.005].57 [.005].51 [.005].57 [.005].00 [.000].30 [.005].36 [.005]
Sens2.73 [.004].76 [.004].84 [.004].59 [.005].83 [.004].59 [.005].96 [.002].82 [.004].87 [.003]
n=1000Spec.78 [.004].79 [.004].52 [.005].97 [.002].52 [.005].97 [.002].00 [.000].67 [.005].54 [.005]
Sens1.79 [.004].77 [.004].60 [.005].79 [.004].60 [.005].79 [.004].00 [.000].37 [.005].49 [.005]
Sens2.95 [.002].96 [.002].98 [.001].80 [.004].98 [.001].80 [.004].99 [.001].97 [.002].99 [.001]

Model comparison with a misspecified logistic model_

Method 1Method 2Method 3Method 4Method 5Method 6Method 7Method 8Method 9
n=100Spec.79 [.004].78 [.004].50 [.005].89 [.003].54 [.005].91 [.003]0.0 [.000].66 [.005].53 [.005]
Sens1.14 [.003].13 [.003].22 [.004].13 [.003].22 [.004].12 [.003]0.0 [.000].09 [.003].08 [.003]
Sens2.17 [.004].23 [.004].37 [.005].14 [.003].36 [.005].13 [.003].83 [.004].32 [.005].32 [.005]
n=350Spec.78 [.004].79 [.004].51 [.005].95 [.002].52 [.005].95 [.002]0.0 [.000].66 [.005].53 [.005]
Sens1.43 [.005].38 [.005].45 [.005].33 [.005].45 [.005].32 [.005]0.0 [.000].22 [.004].20 [.004]
Sens2.52 [.005].57 [.005].73 [.004].34 [.005].73 [.004].34 [.005].91 [.003].65 [.005].66 [.005]
n=1000Spec.78 [.004].80 [.004].52 [.005].97 [.002].52 [.005].97 [.002]0.0 [.000].66 [.005].54 [.005]
Sens1.76 [.004].73 [.004].59 [.005].77 [.004].60 [.005].77 [.004]0.0 [.000].36 [.005].35 [.005]
Sens2.93 [.003].94 [.002].98 [.002].79 [.004].98 [.002].79 [.004].98 [.001].95 [.002].96 [.002]

Model comparison with two effects_

Method 1Method 2Method 3Method 4Method 5Method 6Method 7Method 8Method 9
n=100Spec.83 [.004].81 [.004].57 [.005].92 [.003].60 [.005].93 [.003]0.0 [.000].67 [.005].72 [.004]
Sens1.01 [.001].04 [.002].07 [.002].01 [.001].06 [.002].01 [.001].03 [.002].03 [.002].02 [.001]
Sens2.02 [.002].08 [.003].11 [.003].01 [.001].10 [.003].01 [.001].37 [.005].21 [.004].02 [.001]
n=350Spec.83 [.004].82 [.004].58 [.005].97 [.002].58 [.005].97 [.002]0.0 [.000].68 [.005].71 [.005]
Sens1.03 [.002].17 [.004].20 [.004].05 [.002].20 [.004].04 [.002].01 [.001].09 [.003].02 [.001]
Sens2.11 [.003].25 [.004].31 [.005].05 [.002].30 [.005].04 [.002].43 [.005].47 [.005].02 [.001]
n=1000Spec.82 [.004].82 [.004].57 [.005].98 [.001].58 [.005].98 [.001]0.0 [.000].67 [.005].70 [.005]
Sens1.11 [.003].35 [.005].35 [.005].20 [.004].35 [.005].20 [.004]0.0 [.001].13 [.003].03 [.002]
Sens2.43 [.005].45 [.005].52 [.005].21 [.004].52 [.005].21 [.004].49 [.005].66 [.005].03 [.002]

Model comparison with a stronger effect_

Method 1Method 2Method 3Method 4Method 5Method 6Method 7Method 8Method 9
n=100Spec.78 [.004].78 [.004].51 [.005].89 [.003].54 [.005].90 [.003].00 [.000].66 [.005].53 [.005]
Sens1.76 [.004].72 [.004].57 [.005].77 [.004].60 [.005].78 [.004].00 [.001].37 [.005].47 [.005]
Sens2.90 [.003].92 [.003].96 [.002].84 [.004].95 [.002].83 [.004].96 [.002].95 [.002].97 [.002]
n=350Spec.79 [.004].80 [.004].51 [.005].95 [.002].52 [.005].95 [.002].00 [.000].67 [.005].55 [.005]
Sens1.84 [.004].43 [.005].60 [.005].96 [.002].62 [.005].96 [.002].00 [.000].39 [.005].56 [.005]
Sens21.0 [.000]1.0 [.000]1.0 [.000]1.0 [.001]1.0 [.000]1.0 [.001]1.0 [.000]1.0 [.000]1.0 [.000]
n=1000Spec.78 [.004].80 [.004].51 [.005].97 [.002].52 [.005].97 [.002]0.0 [.000].66 [.005].54 [.005]
Sens1.84 [.004].09 [.003].61 [.005].98 [.001].61 [.005].98 [.001]0.0 [.000].39 [.005].61 [.005]
Sens21.0 [.000]1.0 [.000]1.0 [.000]1.0 [.000]1.0 [.000]1.0 [.000]1.0 [.000]1.0 [.000]1.0 [.000]
DOI: https://doi.org/10.2478/jdis-2024-0001 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 37 - 52
Submitted on: Oct 11, 2023
Accepted on: Dec 22, 2023
Published on: Feb 6, 2024
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Markku Karhunen, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.