References
- An, R. P., Shen, J., & Xiao, Y. Y. (2022). Applications of artificial intelligence to obesity research: scoping review of methodologies. Journal of Medical Internet Research, 24(12), Article e40589. https://www.jmir.org/2022/12/e40589.
- Bengio, Y., & Hu, E. J. (2023, March 21). Scaling in the service of reasoning & model-based ML. Yoshua Bengio. Retrieved May 7, 2023, from https://yoshuabengio.org/2023/03/21/scaling-in-the-service-of-reasoning-model-based-ml/.
- Bontridder, N., & Poullet, Y. (2021). The role of artificial intelligence in disinformation. Data & Policy, 3, Article e32. https://doi.org/10.1017/dap.2021.20.
- Dorr, B., Zajic, D., & Schwartz, R. (2003). Hedge trimmer: A parse-and-trim approach to headline generation. MARYLAND UNIV COLLEGE PARK INST FOR ADVANCED COMPUTER STUDIES. https://dl.acm.org/doi/10.3115/1119467.1119468.
- Fan, M. Y., Huang, Y. C., Qalati, S. A., Shah, S. M. M., Ostic, D., & Pu, Z. J. (2021). Effects of information overload, communication overload, and inequality on digital distrust: a cyber-violence behavior mechanism. Frontiers in Psychology, 12, Article 643981. https://doi.org/10.3389/fpsyg.2021.643981.
- Hadsell, R., Rao, D., Rusu, A. A., & Pascanu, R. (2020). Embracing Change: Continual Learning in Deep Neural Networks. In Trends in Cognitive Sciences (Vol. 24, Issue 12). https://doi.org/10.1016/j.tics.2020.09.004.
- Hughes, R. T., Zhu, L. M., & Bednarz, T. (2021). Generative adversarial networks-enabled human-artificial intelligence collaborative applications for creative and design industries: a systematic review of current approaches and trends. Frontiers in Artificial Intelligence, 4, Article 604234. https://doi.org/10.3389/frai.2021.604234.
- Kupiec, J., Pedersen, J., & Chen, F. (1995). Trainable document summarizer. SIGIR Forum (ACM Special Interest Group on Information Retrieval). https://doi.org/10.1145/215206.215333.
- Mihalcea, R., & Tarau, P. (2004, July). Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing (pp. 404–411).
- Nallapati, R., Zhou, B. W., dos Santos, C., Gulçehre, Ç., & Xiang, B. (2016). Abstractive text summarization using sequence-to-sequence RNNs and beyond. CoNLL 2016 - 20th SIGNLL Conference on Computational Natural Language Learning, Proceedings. https://doi.org/10.18653/v1/k16-1028.
- Nuruzzaman, M., & Hussain, O. K. (2018, October). A survey on chatbot implementation in customer service industry through deep neural networks. In 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE) (pp. 54–61). IEEE.
- Petroni, F., Lewis, P., Piktus, A., Rocktäschel, T., Wu, Y. X., Miller, A. H., & Riedel, S. (2020). How context affects language models’ factual predictions. arXiv preprint arXiv:2005.04611.
- Pi-Sunyer X. (2009). The medical risks of obesity. Postgraduate Medicine, 121(6): 21–33. https://doi.org/10.3810/pgm.2009.11.2074.
- Prottasha, N. J., Sami, A. A., Kowsher, M., Murad, S. A., Bairagi, A. K., Masud, M., & Baz, M. (2022). Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning. Sensors, 22(11). https://doi.org/10.3390/s22114157.
- Sanyaolu, A., Okorie, C., Qi, X. H., Locke, J., & Rehman, S. (2019). Childhood and adolescent obesity in the United States: a public health concern. Global Pediatric Health, 6, Article 2333794X19891305. https://doi.org/10.1177/2333794X19891305.
- Sumner, P., Vivian-Griffiths, S., Boivin, J., Williams, A., Venetis, C. A., Davies, A., Ogden, J., Whelan, L., Hughes, B., Dalton, B., Boy, F., & Chambers, C. D. (2014). The association between exaggeration in health-related science news and academic press releases: retrospective observational study. BMJ, 349, Article g7015. https://www.bmj.com/content/349/bmj.g7015.
- Tan, S. S., & Goonawardene, N. (2017). Internet health information seeking and the patient-physician relationship: a systematic review. Journal of Medical Internet Research, 19(1), Article e9. https://www.jmir.org/2017/1/e9.
- Tang, L. Y., Sun, Z. Y., Idnay, B., Nestor, J. G., Soroush, A., Elias, P. A., … & Peng, Y. F. (2023). Evaluating Large Language Models on Medical Evidence Summarization. medRxiv, 2023-04. https://www.medrxiv.org/content/10.1101/2023.04.22.23288967v1.
- Wallington, S. F., Blake, K., Taylor-Clark, K., & Viswanath, K. (2010). Antecedents to agenda setting and framing in health news: an examination of priority, angle, source, and resource usage from a national survey of U.S. health reporters and editors. Journal of Health Communication, 15(1), 76–94. https://doi.org/10.1080/10810730903460559.
- Wang, Y. X., Bye, J., Bales, K., Gurdasani, D., Mehta, A., Abba-Aji, M., Stuckler, D., & McKee, M. (2022). Understanding and neutralizing covid-19 misinformation and disinformation. BMJ, 379, Article e070331. https://doi.org/10.1136/bmj-2022-070331.
- Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., … & Rush, A. M. (2020, October). Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations (pp. 38–45).
- Zajic, D., Dorr, B., & Schwartz, R. (2002, July). Automatic headline generation for newspaper stories. In Workshop on automatic summarization (pp. 78–85).
- Zhao, S., Deng, E. C., Liao, M. F., Liu, W., & Mao, W. M. (2020). Generating summary using sequence to sequence model. Proceedings of 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference, ITOEC 2020. https://doi.org/10.1109/ITOEC49072. 2020.9141919.