Abramo, G., Ciriaco Andrea D’Angelo, & Zhang, L. (2018). A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list. Journal of Informetrics, 12(4), 1182–1193.
Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to pearson's correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560.
Brewer, D.J., Gates, S.M., & Goldman, C.A. (2001). In Pursuit of Prestige: Strategy and Competition in U.S. Higher Education. Piscataway, NJ: Transaction Publishers, Rutgers University.
Carley, S., Porter, A.L., & Leydesdorff, I.R.L. (2017). Visualization of disciplinary profiles: Enhanced science overlay maps. Journal of Data and Information Science, 2(3), 68–111.
Egghe, L., & Leydesdorff, L. (2009). The Relation between Pearson's correlation coefficient r and Salton's cosine measure. Journal of the American Society for Information Science and Technology, 60(5), 1027–1036.
Halffman, W., & Leydesdorff, L. (2010). Is inequality among universities increasing? Gini coefficients and the elusive rise of Elite Universities. Minerva, 48(1), 55–72.
Leydesdorff, L. (2006). Can scientific journals be classified in terms of aggregated journal-journal citation relations using the Journal Citation Reports? Journal of the Association for Information Science and Technology, 57(5), 601–613.
Leydesdorff, L. (2015). Can technology life-cycles be indicated by diversity in patent classifications? The crucial role of variety. Scientometrics, 105(3), 1441–1451.
Leydesdorff, L., & Ivanova, I. (2021). The Measurement of “Interdisciplinarity” and “Synergy” in Scientific and Extra-Scientific Collaborations. Journal of the Association for Information Science and Technology, 72(1), 387–402. doi: https://doi.org/10.1002/asi.24416
Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.
Le ydesdorff, L., & Schank, T. (2008). Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments. Journal of the American Society for Information Science and Technology, 59(11), 1810–1818.
Leydesdorff, L., Wagner, C.S., & Bornmann, L. (2018). Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield. Scientometrics, 114(2), 567–592.
Leydesdorff, L., Wagner, C.S., & Bornmann, L. (2019). Diversity measurement: Steps towards the measurement of interdisciplinarity? Journal of Informetrics, 13(3), 904–905.
Leydesdorff, L., Wagner, C.S., & Bornmann, L. (2019). Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling Diversity, Relative Variety, and the Gini coefficient. Journal of Informetrics, 13(1), 255–264.
Leydesdorff, L. & Zhou, P. (2007). Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713.
Leydesdorff, L., Wagner, C.S., & Zhang, L. (2021). Are University Rankings Statistically Significant? A Comparison among Chinese Universities and with the USA. Journal of Digital and Information Science and Technology JDIST; arXiv preprint arXiv:2011.08591.
Mills, J.A., & Zandvakili, A. (1997). Statistical inference via bootstrapping for measures of inequality. Journal of Applied Econometrics, 12, 133–150.
Porter, A.L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.
Rafols, I. (2014). Knowledge integration and diffusion: Measures and mapping of diversity and coherence. In Measuring Scholarly Impact (pp. 169–190). Springer, Cham.
Rafols, I., & Meyer, M. (2007). How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors. Scientometrics, 70(3), 633–650.
Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.
Rafols, I., Porter, A.L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887.
Stirling, A. (1998). On the economics and analysis of diversity. Science Policy Research Unit (SPRU), Electronic Working Papers Series, Paper, 28, 1–156.
Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707–719.
Waltman, L., Eck, N.J., & Noyons, E.C.M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.
Zhang, L., Rousseau, R., & Glänzel, W. (2016). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the Association for Information Science and Technology, 67(5), 1257–1265.
Zhang, L., Sun, B., Chinchilla-Rodríguez, Z., Chen, L., & Huang, Y. (2018). Interdisciplinarity and collaboration: On the relationship between disciplinary diversity in departmental affiliations and reference lists. Scientometrics, 117(1), 271–291.
Zhang, L., Sun, B., Jiang, L., & Huang, Y. (2021). On the relationship between interdisciplinarity and impact: Distinct effects on academic and broader impact, Research Evaluation, rvab007. https://doi.org/10.1093/reseval/rvab007