Have a personal or library account? Click to login
The effect of pre-existing sarcopenia on outcomes of critically ill patients treated for COVID-19 Cover

The effect of pre-existing sarcopenia on outcomes of critically ill patients treated for COVID-19

Open Access
|Jan 2025

References

  1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019 Jan 1;48(1):16–31.
  2. Dhillon RJS, Hasni S. Pathogenesis and Management of Sarcopenia. Clin Geriatr Med. 2017 Feb;33(1):17–26.
  3. Vanhorebeek I, Latronico N, Van Den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020 Apr;46(4):637–53.
  4. Toptas M, Yalcin M, Akkoc İ, Demir E, Metin C, Savas Y, et al. The Relation between Sarcopenia and Mortality in Patients at Intensive Care Unit. BioMed Res Int. 2018;2018:1–9.
  5. Peterson SJ, Braunschweig CA. Prevalence of Sarcopenia and Associated Outcomes in the Clinical Setting. Nutr Clin Pract. 2016 Feb;31(1):40–8.
  6. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018 Jul 27;8(1):11369.
  7. Shibahashi K, Sugiyama K, Kashiura M, Hamabe Y. Decreasing skeletal muscle as a risk factor for mortality in elderly patients with sepsis: a retrospective cohort study. J Intensive Care. 2017 Dec;5(1):8.
  8. Andrade-Junior MCD, Salles ICDD, De Brito CMM, Pastore-Junior L, Righetti RF, Yamaguti WP. Skeletal Muscle Wasting and Function Impairment in Intensive Care Patients With Severe COVID-19. Front Physiol. 2021 Mar 11;12:640973.
  9. Paneroni M, Simonelli C, Saleri M, Bertacchini L, Venturelli M, Troosters T, et al. Muscle Strength and Physical Performance in Patients Without Previous Disabilities Recovering From COVID-19 Pneumonia. Am J Phys Med Rehabil. 2021 Feb;100(2):105–9.
  10. Van Der Meij BS, Ligthart-Melis GC, De Van Der Schueren MAE. Malnutrition in patients with COVID-19: assessment and consequences. Curr Opin Clin Nutr Metab Care. 2021 Nov;24(6):543–54.
  11. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020 Jul 10;11:1708.
  12. Li YP, Reid MB. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol. 2000 Oct;279(4):R1165–1170.
  13. Nicolau J, Ayala L, Sanchís P, Olivares J, Dotres K, Soler AG, et al. Influence of nutritional status on clinical outcomes among hospitalized patients with COVID-19. Clin Nutr ESPEN. 2021 Jun;43:223–9.
  14. Shen W, Punyanitya M, Wang Z, Gallagher D, St.-Onge MP, Albu J, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004 Dec;97(6):2333–8.
  15. Prado CM, Birdsell LA, Baracos VE. The emerging role of computerized tomography in assessing cancer cachexia. Curr Opin Support Palliat Care. 2009 Dec;3(4):269–75.
  16. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012 Jul;9(7):671–5.
  17. Gomez-Perez S, McKeever L, Sheean P. Tutorial: A Step-by-Step Guide (Version 2.0) for Measuring Abdominal Circumference and Skeletal Muscle From a Single Cross-Sectional Computed-Tomography Image Using the National Institutes of Health ImageJ. J Parenter Enter Nutr. 2020 Mar;44(3):419–24.
  18. Decazes P. Free macro for ImageJ to segment manually muscles, subcutaneous adipose tissue and visceral adipose tissue at level L3 on computed tomography. In 2019.
  19. Decazes P, Tonnelet D, Vera P, Gardin I. Anthropometer3D: Automatic Multi-Slice Segmentation Software for the Measurement of Anthropometric Parameters from CT of PET/CT. J Digit Imaging. 2019 Apr;32(2):241–50.
  20. Kim JW, Yoon JS, Kim EJ, Hong HL, Kwon HH, Jung CY, et al. Prognostic Implication of Baseline Sarcopenia for Length of Hospital Stay and Survival in Patients with Coronavirus Disease 2019. J Gerontol A Biol Sci Med Sci. 2021 Mar 29;glab085.
  21. Moctezuma-Velázquez P, Miranda-Zazueta G, Ortiz-Brizuela E, González-Lara MF, Tamez-Torres KM, Román-Montes CM, et al. Low Thoracic Skeletal Muscle Area Is Not Associated With Negative Outcomes in Patients With COVID-19. Am J Phys Med Rehabil. 2021 May;100(5):413–8.
  22. Damanti S, Cristel G, Ramirez GA, Bozzolo EP, Da Prat V, Gobbi A, et al. Influence of reduced muscle mass and quality on ventilator weaning and complications during intensive care unit stay in COVID-19 patients. Clin Nutr. 2022 Dec;41(12):2965–72.
  23. Oh HJ, Kim JH, Kim HR, Ahn JY, Jeong SJ, Ku NS, et al. The impact of sarcopenia on short-term and long-term mortality in patients with septic shock. J Cachexia Sarcopenia Muscle. 2022 Aug;13(4):2054–63.
  24. Yanagi N, Koike T, Kamiya K, Hamazaki N, Nozaki K, Ichikawa T, et al. Assessment of Sarcopenia in the Intensive Care Unit and 1-Year Mortality in Survivors of Critical Illness. Nutrients. 2021 Aug 8;13(8):2726.
  25. Kou HW, Yeh CH, Tsai HI, Hsu CC, Hsieh YC, Chen WT, et al. Sarcopenia is an effective predictor of difficult-to-wean and mortality among critically ill surgical patients. Lazzeri C, editor. PLOS ONE. 2019 Aug 8;14(8):e0220699.
  26. Siahaan YMT, Hartoyo V, Hariyanto TI, Kurniawan A. Coronavirus disease 2019 (Covid-19) outcomes in patients with sarcopenia: A meta-analysis and meta-regression. Clin Nutr ESPEN. 2022 Apr;48:158–66.
  27. Molwitz I, Ozga AK, Gerdes L, Ungerer A, Köhler D, Ristow I, et al. Prediction of abdominal CT body composition parameters by thoracic measurements as a new approach to detect sarcopenia in a COVID-19 cohort. Sci Rep. 2022 Apr 19;12(1):6443.
  28. Molfino A, Imbimbo G, Rizzo V, Muscaritoli M, Alampi D. The link between nutritional status and outcomes in COVID-19 patients in ICU: Is obesity or sarcopenia the real problem? Eur J Intern Med. 2021 Sep;91:93–5.
  29. Meyer HJ, Dermendzhiev T, Hetz M, Osterhoff G, Kleber C, Denecke T, et al. Body composition parameters in initial CT imaging of mechanically ventilated trauma patients: Single-centre observational study. J Cachexia Sarcopenia Muscle. 2024 Aug 26;
  30. Jiang T, Lin T, Shu X, Song Q, Dai M, Zhao Y, et al. Prevalence and prognostic value of pre-existing sarcopenia in patients with mechanical ventilation: a systematic review and meta-analysis. Crit Care Lond Engl. 2022 May 16;26(1):140.
  31. Ubachs J, Ziemons J, Minis-Rutten IJG, Kruitwagen RFPM, Kleijnen J, Lambrechts S, et al. Sarcopenia and ovarian cancer survival: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2019 Dec;10(6):1165–74.
  32. Földi M, Farkas N, Kiss S, Dembrovszky F, Szakács Z, Balaskó M, et al. Visceral Adiposity Elevates the Risk of Critical Condition in COVID-19: A Systematic Review and Meta-Analysis. Obesity. 2021 Mar;29(3):521–8.
  33. Petersen A, Bressem K, Albrecht J, Thieß HM, Vahldiek J, Hamm B, et al. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism. 2020 Sep;110:154317.
  34. Battisti S, Pedone C, Napoli N, Russo E, Agnoletti V, Nigra SG, et al. Computed Tomography Highlights Increased Visceral Adiposity Associated With Critical Illness in COVID-19. Diabetes Care. 2020 Oct 1;43(10):e129–30.
  35. Pranata R, Lim MA, Huang I, Yonas E, Henrina J, Vania R, et al. Visceral adiposity, subcutaneous adiposity, and severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. Clin Nutr ESPEN. 2021 Jun;43:163–8.
  36. Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: A systematic review and meta-analysis. J Med Virol. 2021 Jan;93(1):257–61.
  37. Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: An updated systematic review and meta-analysis. J Med Virol. 2021 May;93(5):2662–74.
  38. Yu W, Rohli KE, Yang S, Jia P. Impact of obesity on COVID-19 patients. J Diabetes Complications. 2021 Mar;35(3):107817.
  39. Favre G, Legueult K, Pradier C, Raffaelli C, Ichai C, Iannelli A, et al. Visceral fat is associated to the severity of COVID-19. Metabolism. 2021 Feb;115:154440.
  40. Shi A, Hillege MMG, Wüst RCI, Wu G, Jaspers RT. Synergistic short-term and long-term effects of TGF-β1 and 3 on collagen production in differentiating myoblasts. Biochem Biophys Res Commun. 2021 Apr;547:176–82.
  41. Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev. 2017 May;35:200–21.
  42. Kalani C, Venigalla T, Bailey J, Udeani G, Surani S. Sepsis Patients in Critical Care Units with Obesity: Is Obesity Protective? Cureus. 2020 Feb 10;12(2):e6929.
  43. Lennon H, Sperrin M, Badrick E, Renehan AG. The Obesity Paradox in Cancer: a Review. Curr Oncol Rep. 2016 Sep;18(9):56.
  44. Chang R, Elhusseiny KM, Yeh YC, Sun WZ. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes—A systematic review and meta-analysis. PLOS ONE. 2021 Feb 11;16(2):e0246318.
DOI: https://doi.org/10.2478/jccm-2024-0045 | Journal eISSN: 2393-1817 | Journal ISSN: 2393-1809
Language: English
Page range: 33 - 43
Submitted on: Oct 18, 2024
Accepted on: Nov 21, 2024
Published on: Jan 31, 2025
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Thomas Bradier, Sébastien Grigioni, Céline Savoye-Collet, Gaétan Béduneau, Dorothée Carpentier, Christophe Girault, Maximillien Grall, Grégoire Jolly, Najate Achamrah, Fabienne Tamion, Zoé Demailly, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.