Have a personal or library account? Click to login
Study of Biochemical Parameters as Predictors for Need of Invasive Ventilation in Severely Ill COVID-19 Patients Cover

Study of Biochemical Parameters as Predictors for Need of Invasive Ventilation in Severely Ill COVID-19 Patients

Open Access
|Nov 2023

References

  1. Bohn M, Lippi G, Horvath A, et al. Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence. Clin Chem and Lab Med (CCLM). 2020;58(7):1037–1052.
  2. U.S. Food and Drug Administration. Policy for coronavirus disease-2019 tests during the public health emergency (revised). https://www.fda.gov/regulatory-information/search-fda-guidance-documents. Accessed: 6 May 2023.
  3. World Health Organization WHO coronavirus 2019 (COVID-19) pandemic. (2021). Accessed: 24/06/2023: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
  4. Peng Y, Xu B, Sun B, Han G, Zhou YH. Importance of timely management of patients in reducing fatality rate of coronavirus disease 2019. J Infect Public Health. 2020;13:890–2.
  5. Siow WT, Liew MF, Shrestha BR, Muchtar F, See KC. Managing COVID-19 in resource-limited settings: critical care considerations. Crit Care. 2020;24(1):167–9.
  6. Barbas CSV, Mazza BF. Is It Possible to Predict Respiratory Evolution in COVID-19 Patients? Respiration. 2022;101(7):621–623.
  7. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020; 369:m1328.
  8. Aziz AB, Raqib R, Khan WA, Rahman M, Haque R, Alam M, Zaman K, Ross AG. Integrated control of COVID-19 in resource-poor countries. Int J Infect Dis. 2020;101:98–101.
  9. Zhang K, Jiang X, Madadi M, Chen L, Savitz S, Shams S, DB Net. A novel deep learning framework for mechanical ventilation prediction using electronic health records. In Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, Gainesville, FL, USA, 1–4 August 2021.
  10. Pitamberwale A, Mahmood T, Ansari A, et al. Biochemical Parameters as Prognostic Markers in Severely Ill COVID-19 Patients. Cureus. 2022;14(8): e28594.
  11. Bendavid I, Statlender L, Shvartser L, Teppler S, Azullay R, Sapir R, Singer P. A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19. Sci Rep. 2022 Jun 22;12(1):10573.
  12. Gupta M, Agrawal N, Sharma SK, Ansari AK, Mahmood T, Singh L: Study of utility of basic arterial blood gas parameters and lactate as prognostic markers in patients with severe dengue. Cureus. 2022;14:e24682.
  13. Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, Labrique A, Mohan D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS One. 2021 Mar 4;16(3):e0247461.
  14. Somers VK, Kara T, Xie J. Progressive Hypoxia: A Pivotal Pathophysiologic Mechanism of COVID-19 Pneumonia. Mayo Clin Proc. 2020 Nov;95(11):2339–2342.
  15. Ferro A, Kotecha S, Auzinger G, Yeung E, Fan K. Systematic review and meta-analysis of tracheostomy outcomes in COVID-19 patients. Br J Oral Maxillofac Surg. 2021 Nov;59(9):1013–1023.
  16. Mat Nor MB, Md Ralib A: Procalcitonin clearance for early prediction of survival in critically ill patients with severe sepsis. Crit Care Res Pract. 2014;2014:819034.
  17. Ahmed S, Jafri L, Hoodbhoy Z, Siddiqui I. Prognostic Value of Serum Procalcitonin in COVID-19 Patients: A Systematic Review. Indian J Crit Care Med. 2021 Jan;25(1):77–84
  18. Twe CW, Khoo DKY, Law KB, et al. The role of procalcitonin in predicting risk of mechanical ventilation and mortality among moderate to severe COVID-19 patients. BMC Infect Dis. 2022 Apr 15;22(1):378.
  19. Xiang HX, Fei J, Xiang Y, et al.: Renal dysfunction and prognosis of COVID-19 patients: a hospital-based retrospective cohort study. BMC Infect Dis. 2021, 21:158.
  20. Tzoulis P, Waung JA, Bagkeris E, et al.. Dysnatremia is a Predictor for Morbidity and Mortality in Hospitalized Patients with COVID-19. J Clin Endocrinol Metab. 2021 May 13;106(6):1637–1648.
  21. Tzoulis P, Grossman AB, Baldeweg SE, Bouloux P, Kaltsas G. MANAGEMENT OF ENDOCRINE DISEASE: Dysnatraemia in COVID-19: prevalence, prognostic impact, pathophysiology, and management. Eur J Endocrinol. 2021 Sep 6;185(4):R103–R111.
  22. Li W, Lin F, Dai M, Chen L, Han D, Cui Y, Pan P. Early predictors for mechanical ventilation in COVID-19 patients. Ther Adv Respir Dis. 2020 Jan–Dec;14:1753466620963017.
  23. Vidali S, Morosetti D, Cossu E, Luisi MLE, Pancani S, Semeraro V, Consales G. D-dimer as an indicator of prognosis in SARSCoV-2 infection: a systematic review. ERJ Open Res. 2020 Jul 13;6(2):00260–2020.
  24. Yao Y, Cao J, Wang Q, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care. 2020 Jul 10;8:49.
  25. Varikasuvu SR, Varshney S, Dutt N, Munikumar M, Asfahan S, Kulkarni PP, Gupta P. D-dimer, disease severity, and deaths (3D-study) in patients with COVID-19: a systematic review and meta-analysis of 100 studies. Sci Rep. 2021;11(1):21888.
  26. Kulkarni, AR, Athavale A.M, Sahni A, et al. Deep learning model to predict the need for mechanical ventilation using chest X ray images in hospitalised patients with COVID-19. BMJ Innov. 2021;7:261–270.
  27. Aljouie AF, Almazroa A, Bokhari Y, et al. Early Prediction of COVID-19 Ventilation Requirement and Mortality from Routinely Collected Baseline Chest Radiographs, Laboratory, and Clinical Data with Machine Learning. J. Multidiscip. Healthc. 2021;14:2017–2033.
  28. Mat Nor MB, Md Ralib A. Procalcitonin clearance for early prediction of survival in critically ill patients with severe sepsis. Crit Care Res Pract. 2014;2014:819034.
  29. Burke H, Freeman A, O’Regan P, et al. Biomarker identification using dynamic time warping analysis: a longitudinal cohort study of patients with COVID-19 in a UK tertiary hospital. BMJ 2022 15;12(2):e050331.
DOI: https://doi.org/10.2478/jccm-2023-0030 | Journal eISSN: 2393-1817 | Journal ISSN: 2393-1809
Language: English
Page range: 262 - 270
Submitted on: Jul 19, 2023
Accepted on: Oct 19, 2023
Published on: Nov 14, 2023
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Azmat Kamal Ansari, Anjali Pitamberwale, Shabana Andleeb Ansari, Tariq Mahmood, Kirti Limgaokar, Geeta Karki, Lalit Singh, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.