References
- Leroy O, Gangneux J-P, Montravers P, et al. Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: A multicenter, prospective, observational study in France (2005–2006). Critical Care Medicine 2009; 37: 1612–1618.
- Wong LK, Barry AL, Horgan SM. Comparison of six different criteria for judging the acceptability of sputum specimens. Journal of Clinical Microbiology 1982; 16: 627–631.
- Belibasakis GN. Microbiological changes of the ageing oral cavity. Archives of Oral Biology 2018; 96: 230–232.
- Fanello S, Bouchara JP, Sauteron M, et al. Predictive value of oral colonization by Candida yeasts for the onset of a nosocomial infection in elderly hospitalized patients. Journal of Medical Microbiology, 2006; 55: 223–228.
- Ayhan M, Biṙengel MS, Yilmaz G, et al. Evaluaiton of Risk Factors for Candida Colonization and Infection in Non-Neutropenic Intensive Care Patients. Turkiye Klinikleri J Med Sci 2019; 39: 251–257.
- Olaechea PM, Palomar M, León-Gil C, et al. Economic Impact of Candida Colonization and Candida Infection in the Critically Ill Patient. Eur J Clin Microbiol Infect Dis 2004; 23: 323–330.
- Wisplinghoff H, Bischoff T, Tallent SM, et al. Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study. Clin Infect Dis 2004; 39: 309–317.
- Barchiesi F, Orsetti E, Mazzanti S, et al. Candidemia in the elderly: What does it change? PLOS ONE 2017; 12: e0176576.
- Antinori S, Milazzo L, Sollima S, et al. Candidemia and invasive candidiasis in adults: A narrative review. European Journal of Internal Medicine 2016; 34: 21–28.
- Sadeghi G, Ebrahimi-Rad M, Mousavi SF, et al. Emergence of non-Candida albicans species: Epidemiology, phylogeny and fluconazole susceptibility profile. Journal de Mycologie Médicale 2018; 28: 51–58.
- Lamoth F, Lockhart SR, Berkow EL, et al. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother 2018; 73: i4–i13.
- Isolated Candida infection of the lung. Respiratory Medicine Case Reports 2015; 16: 18–19.
- Meersseman W, Lagrou K, Spriet I, et al. Significance of the isolation of Candida species from airway samples in critically ill patients: a prospective, autopsy study. Intensive Care Med 2009; 35: 1526–1531.
- Sousa AS, Ferrito C, Paiva JA. Intubation-associated pneumonia: An integrative review. Intensive and Critical Care Nursing 2018; 44: 45–52.
- Barenfanger J, Arakere P, Cruz RD, et al. Improved Outcomes Associated with Limiting Identification of Candida spp. in Respiratory Secretions. Journal of Clinical Microbiology 2003; 41: 5645–5649.
- Pendleton KM, Huffnagle GB, Dickson RP. The significance of Candida in the human respiratory tract: our evolving understanding. Pathog Dis; 75. Epub ahead of print 1 April 2017. DOI: 10.1093/femspd/ftx029.
- Castanheira M. Fungemia Surveillance in Denmark Demonstrates Emergence of Non-albicans Candida Species and Higher Antifungal Usage and Resistance Rates than in Other Nations. J Clin Microbiol 2018; 56: e01907-17.
- Williamson DR, Albert M, Perreault MM, et al. The relationship between Candida species cultured from the respiratory tract and systemic inflammation in critically ill patients with ventilator-associated pneumonia. Can J Anaesth 2011; 58: 275–284.
- Hilty M, Burke C, Pedro H, et al. Disordered Microbial Communities in Asthmatic Airways. PLOS ONE 2010; 5: e8578.
- Zhang D, Wang Y, Shen S, et al. The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes 2020; 11: 655–679.
- Young S-H, Ostroff GR, Zeidler-Erdely PC, et al. A Comparison of the Pulmonary Inflammatory Potential of Different Components of Yeast Cell Wall. Journal of Toxicology and Environmental Health, Part A 2007; 70: 1116–1124.
- Terraneo S, Ferrer M, Martín-Loeches I, et al. Impact of Candida spp. isolation in the respiratory tract in patients with intensive care unit-acquired pneumonia. Clinical Microbiology and Infection 2016; 22: 94.e1-94.e8.
- Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 2015; 58 Suppl 2: 2–13.
- Gunasekaran J, Saksena R, Jain M, et al. Can sputum gram stain be used to predict lower respiratory tract infection and guide empiric antimicrobial treatment: Experience from a tertiary care hospital. Journal of Microbiological Methods 2019; 166: 105731.
- Fukuyama H, Yamashiro S, Kinjo K, et al. Validation of sputum Gram stain for treatment of community-acquired pneumonia and healthcare-associated pneumonia: a prospective observational study. BMC Infect Dis 2014; 14: 534.
- Azoulay E, Cohen Y, Zahar J-R, et al. Practices in non-neutropenic ICU patients with Candida-positive airway specimens. Intensive Care Med 2004; 30: 1384–1389.
- Eggimann P, Pittet D. Candida colonization index and subsequent infection in critically ill surgical patients: 20 years later. Intensive Care Med 2014; 40: 1429–1448.
- Nguyen LDN, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 2015; 6: 89.
- Hamet M, Pavon A, Dalle F, et al. Candida spp. airway colonization could promote antibiotic-resistant bacteria selection in patients with suspected ventilator-associated pneumonia. Intensive Care Med 2012; 38: 1272–1279.
- Roux D, Gaudry S, Dreyfuss D, et al. Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat*. Critical Care Medicine 2009; 37: 1062–1067.
- Trejo-Hernández A, Andrade-Domínguez A, Hernández M, et al. Interspecies competition triggers virulence and mutability in Candida albicans – Pseudomonas aeruginosa mixed biofilms. The ISME Journal 2014; 8: 1974–1988.
- Bandara HMHN, Panduwawala CP, Samaranayake LP. Biodiversity of the human oral mycobiome in health and disease. Oral Diseases 2019; 25: 363–371.
- Fourie R, Pohl CH. Beyond Antagonism: The Interaction Between Candida Species and Pseudomonas aeruginosa. Journal of Fungi 2019; 5: 34.
- Nseir S, Jozefowicz E, Cavestri B, et al. Impact of antifungal treatment on Candida–Pseudomonas interaction: a preliminary retrospective case–control study. Intensive Care Med 2007; 33: 137–142.
- Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004– 2008. Diagnostic Microbiology and Infectious Disease 2012; 74: 323–331.
- Clancy CJ, Nguyen MH. Finding the “Missing 50%” of Invasive Candidiasis: How Nonculture Diagnostics Will Improve Understanding of Disease Spectrum and Transform Patient Care. Clin Infect Dis 2013; 56: 1284–1292.
- Fortún J, Martín-Dávila P, Gómez-García de la Pedrosa E, et al. Emerging trends in candidemia: A higher incidence but a similar outcome. Journal of Infection 2012; 65: 64–70.
- Adriana Monea, Luigi Santacroce, Massimo Marrelli, et al. Oral candidiasis and inflammatory response&58; A potential synergic contribution to the onset of Type-2 Diabetes Mellitus. Australasian Medical Journal 2017; 10: 550–556.
- Rodrigues CF, Rodrigues ME, Henriques M. Candida sp. Infections in Patients with Diabetes Mellitus. Journal of Clinical Medicine 2019; 8: 76.
- Petrovic SM, Radunovic M, Barac M, et al. Subgingival areas as potential reservoirs of different Candida spp in type 2 diabetes patients and healthy subjects. PLOS ONE 2019; 14: e0210527.
- Ferreira EG, Yatsuda F, Pini M, et al. Implications of the presence of yeasts in tracheobronchial secretions of critically ill intubated patients. EXCLI J 2019; 18: 801–811.
- Ergin F, Eren Tülek N, Yetkin MA, et al. Evaluation of Candida colonization in intensive care unit patients and the use of Candida colonization index. Mikrobiyol Bul 2013; 47: 305–317.
- Ciurea CN, Kosovski I-B, Mare AD, et al. Candida and Candidiasis—Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms 2020; 8: 857.
- Perkins SD, Woeltje KF, Angenent LT. Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. International Journal of Medical Microbiology 2010; 300: 503–511.
- Cavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med 2018; 5: 28.
- Andes D, Nett J, Oschel P, et al. Development and Characterization of an In Vivo Central Venous Catheter Candida albicans Biofilm Model. Infection and Immunity 2004; 72: 6023–6031.
- Eix EF, Nett JE. How Biofilm Growth Affects Candida-Host Interactions. Front Microbiol 2020; 11: 1437.
- Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology 2011; 9: 109–118.
- Johnson CJ, Cabezas-Olcoz J, Kernien JF, et al. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps. PLOS Pathogens 2016; 12: e1005884.
- Uppuluri P, Chaturvedi AK, Srinivasan A, et al. Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle. PLoS Pathog 2010; 6: e1000828.
- Wall G, Montelongo-Jauregui D, Bonifacio BV, et al. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Current Opinion in Microbiology 2019; 52: 1–6.