References
- Al-Manaseer, A. (2025). Deconstructing the Ideological Frame of President Vladimir Putin’s Rhetoric: A Socio-Cognitive Analysis. Wasit Journal for Human Sciences, 21(1), pp. 984–999.
- Burrows, J. (2002). Delta: A Measure of Stylistic Difference and a Guide to Likely Authorship. Literary and Linguistic Computing, 17(3), pp. 267–287.
- Chiluwa, I., and Ruzaite, J. (2024). Analysing the language of political conflict: a study of war rhetoric of Vladimir Putin and Volodymyr Zelensky. Critical Discourse Studies, pp. 1–17.
- Eder, M., Rybicki, J., and Kestemont, M. (2016). Stylometry with R: a package for computational text analysis. R Journal, 8(1), pp. 107–121.
- Fafiyebi, D. O., and Fafiyebi, O. F. (2025). A Speech Act Analysis of the Utterances of Selected Key Actors in the Russian/Ukrainian Crisis: Pragmatics. International Journal of Language and Literary Studies, 7(1), pp. 336–352.
- Hidalgo-Cobo, P., López-Marcos, C., and Puebla-Martínez, B. (2024). Discourse analysis from an international relations perspective: the case study of Tucker Carlson’s televised interview with Vladimir Putin. aDResearch ESIC International Journal of Communication Research, 32 (November, 2024), e285.
- Hoover, D. L. (2003). Multivariate Analysis and the Study of Style Variation. Literary and Linguistic Computing, 18(4), pp. 341–360.
- Janda, L., Fidler, M., Cvrček, V., and Obukhova, A. (2022). The case for case in Putin’s speeches. Russian Linguistics, 47, pp. 15–40.
- Kadim, E. (2023). A Critical Discourse Analysis of Vladimir Putin’s Speech Announcing ‘Special Military Operation’ in Ukraine. International Journal of Humanities and Educational Research, 5, pp. 424–444.
- Kopik, M. (2023). Comparative analysis of American and Russian political discourse: A discourse analysis study. Linguistics Beyond and Within, 9, pp. 49–59.
- Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of massive datasets. Accessible at: http://www.mmds.org/#ver30.
- Libovický, J. (2016). KER – Keyword extractor. [software] Accessible at: http://lindat.mff.cuni.cz/services/ker/.
- Oleinik, A. (2023): A comparison of two text specificity measures analyzing a heterogenous text corpus. Glottometrics, 54, pp. 1–12.
- Rajaraman, A., and Ullman, J. D. (2011). Data mining. In: J. Leskovec – A. Rajaraman – J. D. Ullman (eds.): Mining of Massive Datasets, pp. 1–19. Cambridge.
- Ramos, J. (2003). Using TF-IDF to Determine Word Relevance in Document Queries. In Proceedings of the First Instructional Conference on Machine Learning, pp. 133–142. Piscataway, NJ: Rutgers University.
- Salton, G., and Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), pp. 513–523.
- Scott, M., and Tribble, Ch. (2006). Textual patterns. Key words and corpus analysis in language education. Amsterdam: Benjamins.
- Shahbaz, J., and Nawab, H. (2024). Language, Politics, and Power: Unveiling Putin’s Annexation Narrative through Fairclough’s Model, 7(2), pp. 24–33.
- stylo: Stylometric Multivariate Analyses (version 0.7.4). [software]. Accessible at: https://cran.r-project.org/web/packages/stylo/index.html.
- The R Project for Statistical Computing: R (version 4.2.0) [software]. Accessible at: https://www.r-project.org/.
- Tutar, H., and Bağ, S. M. (2023). Critical discourse analysis on leader statements in the Russia-Ukraine War. Etkileşim, 11, pp. 44–66.
- Wang, Y., and Zeng, T. (2023): Fellow or foe? A quantitative thematic exploration into Putin’s and Trump’s stylometric features. Glottometrics, 54, pp. 39–57.