References
- Bojar, O. et al. (2014). Findings of the 2014 Workshop on Statistical Machine Translation. In Proceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, Maryland, USA. ACL, pp. 12–58.
- Bryant, Ch. et al. (2023). GEC: A Survey of the State of the Art. Computational Linguistics 2023; 49(3), pp. 643–701. Accessible at: https://doi.org/10.1162/coli_a_00478.
- Internet Language Reference Book (2025). Praha: ÚJČ AV ČR.
- Hlaváčková D. et al. (2022). Opravidlo.
- Kholodna, N., and Vysotska, V. (2023). Technology for grammatical errors correction in Ukrainian text content based on machine learning methods. Radio Electronics, Computer Science, Control, (1), 114. Accessible at: https://doi.org/10.15588/1607-3274-2023-1-12.
- Kovář, V. et al. (2011). Syntactic Analysis Using Finite Patterns: A New Parsing System for Czech. In Human Language Technology. Challenges for Computer Science and Linguistics. Berlin/Heidelberg: Springer, pp. 161–171. Accessible at: http://dx.doi.org/10.1007/978-3-642-20095-3_15.
- Křen, M. et al. (2020). SYN2020: A representative corpus of written Czech. UCNK FF UK. Accessible at: http://www.korpus.cz.
- Liu, R. et al. (2024). Proofread: Fixes All Errors with One Tap. Accessible at: arXiv preprint arXiv:2406.04523.
- Machura, J. et al. (2022). Automatic Grammar Correction of Commas in Czech Written Texts. Online. In: P. Sojka et al. (eds): TSD 2022. Cham (CH): Springer, pp. 113–124. Accessible at: https://dx.doi.org/10.1007/978-3-031-16270-1_10.
- Machura, J. et al. (2023). Is it Possible to Re-educate RoBERTa? Jazykovedný časopis, 74(1), pp. 357–368. Accessible at: https://dx.doi.org/10.2478/jazcas-2023-0052.
- Medková, H., and A. Horák. (2022). Distinguishing the Types of Coordinated Verbs with a Shared Argument by means of New ZeugBERT Language Model and ZeugmaDataset. In: A. Dimou et al. (eds.): Towards a Knowledge-Aware AI: SEMANTiCS 2022. Amsterdam: IOS Press, pp. 206–218. Accessible at: https://dx.doi.org/10.3233/SSW220022.
- Mrkývka, V. (2023). Webový korektor jako prostředek formalizace pravidel českého jazyka. PhD Thesis, Brno: MU.
- Omelianchuk, K. et al. (2020). GECToR – Grammatical Error Correction: Tag, Not Rewrite. In Proceedings of the 15th Workshop on Innovative Use of NLP for Building Educational Applications, Seattle, WA, USA, pp. 163–170.
- Prokofyev, R. et al. (2014). Correct Me If I’m Wrong: Fixing Grammatical Errors by Preposition Ranking. In Proceedings of CIKM’14. Association for Computing Machinery, New York, NY, USA, pp. 331–340. Accessible at: https://doi.org/10.1145/2661829.2661942.
- Song, Y. et al. (2024). GEE! Grammar Error Explanation with Large Language Models. In Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico. ACL, pp. 754–781.
- Straka, M. et al. (2021). RobeCzech: Czech RoBERTa, a Monolingual Contextualized Language Representation Model. In: K. Ekštein et al. (eds): TSD 2021. Lecture Notes in Computer Science, Vol. 12848. Springer, Cham. Accessible at: https://doi.org/10.1007/978-3-030-83527-9_17.
- Wang, Y. et al. (2020). A comprehensive survey of grammar error correction. Accessible at: arXiv preprint arXiv:2005.06600.