Have a personal or library account? Click to login
From Rule-based Proofreader Beta Opravidlo to AI-powered Opravidlo 2.0 Cover

From Rule-based Proofreader Beta Opravidlo to AI-powered Opravidlo 2.0

Open Access
|Nov 2025

References

  1. Bojar, O. et al. (2014). Findings of the 2014 Workshop on Statistical Machine Translation. In Proceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, Maryland, USA. ACL, pp. 12–58.
  2. Bryant, Ch. et al. (2023). GEC: A Survey of the State of the Art. Computational Linguistics 2023; 49(3), pp. 643–701. Accessible at: https://doi.org/10.1162/coli_a_00478.
  3. Internet Language Reference Book (2025). Praha: ÚJČ AV ČR.
  4. Hlaváčková D. et al. (2022). Opravidlo.
  5. Kholodna, N., and Vysotska, V. (2023). Technology for grammatical errors correction in Ukrainian text content based on machine learning methods. Radio Electronics, Computer Science, Control, (1), 114. Accessible at: https://doi.org/10.15588/1607-3274-2023-1-12.
  6. Kovář, V. et al. (2011). Syntactic Analysis Using Finite Patterns: A New Parsing System for Czech. In Human Language Technology. Challenges for Computer Science and Linguistics. Berlin/Heidelberg: Springer, pp. 161–171. Accessible at: http://dx.doi.org/10.1007/978-3-642-20095-3_15.
  7. Křen, M. et al. (2020). SYN2020: A representative corpus of written Czech. UCNK FF UK. Accessible at: http://www.korpus.cz.
  8. Liu, R. et al. (2024). Proofread: Fixes All Errors with One Tap. Accessible at: arXiv preprint arXiv:2406.04523.
  9. Machura, J. et al. (2022). Automatic Grammar Correction of Commas in Czech Written Texts. Online. In: P. Sojka et al. (eds): TSD 2022. Cham (CH): Springer, pp. 113–124. Accessible at: https://dx.doi.org/10.1007/978-3-031-16270-1_10.
  10. Machura, J. et al. (2023). Is it Possible to Re-educate RoBERTa? Jazykovedný časopis, 74(1), pp. 357–368. Accessible at: https://dx.doi.org/10.2478/jazcas-2023-0052.
  11. Medková, H., and A. Horák. (2022). Distinguishing the Types of Coordinated Verbs with a Shared Argument by means of New ZeugBERT Language Model and ZeugmaDataset. In: A. Dimou et al. (eds.): Towards a Knowledge-Aware AI: SEMANTiCS 2022. Amsterdam: IOS Press, pp. 206–218. Accessible at: https://dx.doi.org/10.3233/SSW220022.
  12. Mrkývka, V. (2023). Webový korektor jako prostředek formalizace pravidel českého jazyka. PhD Thesis, Brno: MU.
  13. Omelianchuk, K. et al. (2020). GECToR – Grammatical Error Correction: Tag, Not Rewrite. In Proceedings of the 15th Workshop on Innovative Use of NLP for Building Educational Applications, Seattle, WA, USA, pp. 163–170.
  14. Prokofyev, R. et al. (2014). Correct Me If I’m Wrong: Fixing Grammatical Errors by Preposition Ranking. In Proceedings of CIKM’14. Association for Computing Machinery, New York, NY, USA, pp. 331–340. Accessible at: https://doi.org/10.1145/2661829.2661942.
  15. Song, Y. et al. (2024). GEE! Grammar Error Explanation with Large Language Models. In Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico. ACL, pp. 754–781.
  16. Straka, M. et al. (2021). RobeCzech: Czech RoBERTa, a Monolingual Contextualized Language Representation Model. In: K. Ekštein et al. (eds): TSD 2021. Lecture Notes in Computer Science, Vol. 12848. Springer, Cham. Accessible at: https://doi.org/10.1007/978-3-030-83527-9_17.
  17. Wang, Y. et al. (2020). A comprehensive survey of grammar error correction. Accessible at: arXiv preprint arXiv:2005.06600.
DOI: https://doi.org/10.2478/jazcas-2025-0026 | Journal eISSN: 1338-4287 | Journal ISSN: 0021-5597
Language: English
Page range: 290 - 299
Published on: Nov 27, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Hana Žižková, Zuzana Nevěřilová, Jakub Machura, Aleš Horák, Dana Hlaváčková, Patrik Stano, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.