References
- Alkomah, F., and Ma, X. (2022). A literature review of textual hate speech detection methods and datasets. Information, 13(6), 273 p.
- Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Pardo, F. M. R., ... and Sanguinetti, M. (2019). Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In Proceedings of the 13th international workshop on semantic evaluation, pp. 54–63.
- Cao, Y. T., Domingo, L. F., Gilbert, S. A., Mazurek, M., Shilton, K., and Daumé III, H. (2023). Toxicity detection is not all you need: Measuring the gaps to supporting volunteer content moderators. Accessible at: arXiv preprint arXiv:2311.07879.
- Caselli, T., Basile, V., Mitrović, J., Kartoziya, I., and Granitzer, M. (2020, May). I feel offended, don’t be abusive! implicit/explicit messages in offensive and abusive language. In Proceedings of the twelfth language resources and evaluation conference, pp. 6193–6202.
- Chen, M. B., Lau, J. H., and Frermann, L. (2023). The uncivil empathy: Investigating the relation between empathy and toxicity in online mental health support forums. In Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association, pp. 136–147.
- Davidson, T., Warmsley, D., Macy, M., and Weber, I. (2017). Automated hate speech detection and the problem of offensive language. In Proceedings of the international AAAI conference on web and social media, 11(1), pp. 512–515.
- ElSherief, M., Nilizadeh, S., Nguyen, D., Vigna, G., and Belding, E. (2018). Peer to peer hate: Hate speech instigators and their targets. In Proceedings of the International AAAI Conference on Web and Social Media, 12(1).
- Ferko, V., (2024). Anotácia a vyhodnotenie slovenskej databázy nenávistnej reči. Košice: Technická univerzita v Košiciach, Fakulta elektrotechniky a informatiky, 55 p. Vedúci práce: doc. Ing. Daniel Hládek, PhD.
- Fersini, E., Nozza, D., and Rosso, P. (2018). Overview of the evalita 2018 task on automatic misogyny identification (ami). In CEUR workshop proceedings, Vol. 2263, pp. 1–9. CEUR-WS.
- Founta, A., Djouvas, C., Chatzakou, D., Leontiadis, I., Blackburn, J., Stringhini, G., ... and Kourtellis, N. (2018). Large scale crowdsourcing and characterization of twitter abusive behavior. In Proceedings of the international AAAI conference on web and social media, 12(1).
- Golbeck, J., Ashktorab, Z., Banjo, R. O., Berlinger, A., Bhagwan, S., Buntain, C., ... and Wu, D. M. (2017, June). A large labeled corpus for online harassment research. In Proceedings of the 2017 ACM on web science conference, pp. 229–233.
- Hee, M. S., Sharma, S., Cao, R., Nandi, P., Nakov, P., Chakraborty, T., and Lee, R. (2024). Recent advances in online hate speech moderation: Multimodality and the role of large models. Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 4407–4419.
- Jaggi, H., Murali, K., Fleisig, E., and Bıyık, E. (2024). Accurate and Data-Efficient Toxicity Prediction when Annotators Disagree. Accessible at: arXiv preprint arXiv:2410.12217.
- Kocoń, J., Figas, A., Gruza, M., Puchalska, D., Kajdanowicz, T., and Kazienko, P. (2021). Offensive, aggressive, and hate speech analysis: From data-centric to human-centered approach. Information Processing & Management, 58(5), 102643.
- Krchnavy, R., and Simko, M. (2017). Sentiment analysis of social network posts in Slovak language. In 2017 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), pp. 20–25.
- Kvassay, M. (2022). New Public Dataset for Classification of Inappropriate Comments in Slovak language. In 2022 20th International Conference on Emerging eLearning Technologies and Applications (ICETA), pp. 437–441.
- Lee, N., Jung, C., Myung, J., Jin, J., Camacho-Collados, J., Kim, J., and Oh, A. (2023). Exploring cross-cultural differences in English hate speech annotations: From dataset construction to analysis. Accessible at: arXiv preprint arXiv:2308.16705.
- Machová, K., Mach, M., and Vasilko, M. (2022). Recognition of toxicity of reviews in online discussions. Acta Polytechnica Hungarica, 19(4).
- Machová, K., Mach, M., and Adamišín, K. (2022). Machine learning and lexicon approach to texts processing in the detection of degrees of toxicity in online discussions. Sensors, 22(17), 6468.
- Mandl, T., Modha, S., Majumder, P., Patel, D., Dave, M., Mandlia, C., and Patel, A. (2019). Overview of the hasoc track at fire 2019: Hate speech and offensive content identification in indo-european languages. In Proceedings of the 11th annual meeting of the Forum for Information Retrieval Evaluation, pp. 14–17.
- Mandl, T., Modha, S., Kumar M, A., and Chakravarthi, B. R. (2020). Overview of the hasoc track at fire 2020: Hate speech and offensive language identification in tamil, malayalam, hindi, english and german. In Proceedings of the 12th annual meeting of the forum for information retrieval evaluation, pp. 29–32.
- Mathew, B., Saha, P., Yimam, S. M., Biemann, C., Goyal, P., and Mukherjee, A. (2021). Hatexplain: A benchmark dataset for explainable hate speech detection. In Proceedings of the AAAI conference on artificial intelligence, 35(17), pp. 14867–14875.
- Mishra, A. K., Saumya, S., and Kumar, A. (2020). IIIT_DWD@ HASOC 2020: Identifying offensive content in Indo-European languages. In FIRE (working notes), pp. 139–144).
- Mulki, H., Haddad, H., Ali, C. B., and Alshabani, H. (2019). L-hsab: A levantine twitter dataset for hate speech and abusive language. In Proceedings of the third workshop on abusive language online, pp. 111–118.
- Ousidhoum, N., Lin, Z., Zhang, H., Song, Y., and Yeung, D. Y. (2019). Multilingual and multi-aspect hate speech analysis. Accessible at: arXiv preprint arXiv:1908.11049.
- Papcunová, J., Martončik, M., Fedáková, D., Kentoš, M., Bozogáňová, M., Srba, I., ... and Adamkovič, M. (2023). Hate speech operationalization: a preliminary examination of hate speech indicators and their structure. Complex & intelligent systems, 9(3), pp. 2827–2842.
- Park, K., Baik, M. J., Hwang, Y., Shin, Y., Lee, H., Lee, R., ... and Park, S. (2024). Harmful Suicide Content Detection. Accessible at: arXiv preprint arXiv:2407.13942.
- Patil, A., (2023). Youtube Statistics, Accessible at: https://www.kaggle.com/datasets/advaypatil/youtube-statistics.
- Poletto, F., Basile, V., Sanguinetti, M., Bosco, C., and Patti, V. (2021). Resources and benchmark corpora for hate speech detection: a systematic review. Language Resources and Evaluation, 55, pp. 477–523.