Have a personal or library account? Click to login
Annotation of Rhetorical Roles and Syllogistic Relations in Czech Argumentative Legal and Administrative Texts Cover

Annotation of Rhetorical Roles and Syllogistic Relations in Czech Argumentative Legal and Administrative Texts

Open Access
|Nov 2025

References

  1. Aristotle (2004). Rhetoric. New York: Dover Publications.
  2. Bendová, K., and Cinková, S. (2021). Adaptation of Classic Readability Metrics to Czech. In 24th International Conference on Text, Speech and Dialogue. Cham, Switzerland: Springer, pp. 159–171.
  3. Bhattacharya, P. et al. (2023). DeepRhole: Deep Learning for Rhetorical Role Labeling of Sentences in Legal Case Documents. Artificial Intelligence and Law, 31(1), pp. 53–90. Accessible at: https://doi.org/10.1007/s10506-021-09304-5.
  4. Cinková, S. (2024). Linguistic Factors in the Readability of Czech Administrative and Legal Texts. In: Z. Bohušová – M. Dove (eds.): To Understand Is to Be Free. Interdisciplinary Aspects of Comprehensibility and Understanding. Vienna, Austria: Praesens Verlag, pp. 303–325.
  5. DuBay, W. H. (2004). The Principles of Readability. Costa Mesa, California: Impact Information. Accessible at: https://www.researchgate.net/publication/228965813_The_Principles_of_Readability.
  6. Gardner, J. A. (1993). Legal Argument: The Structure and Language of Effective Advocacy. LexisNexis. Accessible at: https://store.lexisnexis.com/en-us/legal-argument--the-structure-and-language-of-effective-advocacy-sku-us-ebook-03082-epub.html.
  7. Grover, C., Hachey, B., and Korycinski, C. (2003). Summarising Legal Texts: Sentential Tense and Argumentative Roles. In Proceedings of the HLT-NAACL 03 Text Summarization Workshop, pp. 33–40. Accessible at: https://aclanthology.org/W03-0505/.
  8. Habernal, I. et al. (2024). Mining Legal Arguments in Court Decisions. Artificial Intelligence and Law, 32(3), pp. 1–38. Accessible at: https://doi.org/10.1007/s10506-023-09361-y.
  9. Malik, V. et al. (2022). Semantic Segmentation of Legal Documents via Rhetorical Roles. In: N. Aletras et al. (eds.): Proceedings of the Natural Legal Language Processing Workshop 2022. Abu Dhabi, United Arab Emirates (Hybrid): Association for Computational Linguistics, pp. 153–171. Accessible at: https://doi.org/10.18653/v1/2022.nllp-1.13.
  10. Poudyal, P. et al. (2020). ECHR: Legal Corpus for Argument Mining. In: E. Cabrio – S. Villata (eds.): Proceedings of the 7th Workshop on Argument Mining. Online: Association for Computational Linguistics, pp. 67–75. Accessible at: https://aclanthology.org/2020.argmining-1.8/.
  11. Šavelka, J., and Ashley, K. D. (2018). Segmenting U.S. Court Decisions into Functional and Issue Specific Parts. In Frontiers in Artificial Intelligence and Applications. IOS Press. Accessible at: https://doi.org/10.3233/978-1-61499-935-5-111.
  12. Song, H., and Schwarz, N. (2010). If It’s Easy to Read, It’s Easy to Do, Pretty, Good, and True. Bulletin of the British Psychological Society, 23(2), pp. 108–111.
  13. Teruel, M. et al. (2018). Increasing Argument Annotation Reproducibility by Using Inter-Annotator Agreement to Improve Guidelines. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018).
  14. Tyler, T. R. (1990). Why People Obey the Law. New Haven and London: Yale University Press.
  15. de Vargas Feijó, D., and Moreira, V. P. (2018). RulingBR: A Summarization Dataset for Legal Texts. In: A. Villavicencio et al. (eds.): Computational Processing of the Portuguese Language. Cham: Springer International Publishing, pp. 255–264.
  16. Wagner, W., and Walker, W. (2019). Incomprehensible!: A Study of How Our Legal System Encourages Incomprehensibility, Why It Matters, and What We Can Do About It. Cambridge Core. Cambridge: Cambridge University Press. Accessible at: https://doi.org/10.1017/9781139051774.
  17. Yamada, H., Teufel, S., and Tokunaga, T. (2019). Building a Corpus of Legal Argumentation in Japanese Judgement Documents: Towards Structure-Based Summarisation. Artificial Intelligence and Law, 27(2), pp. 141–170. Accessible at: https://doi.org/10.1007/s10506-019-09242-3.
DOI: https://doi.org/10.2478/jazcas-2025-0013 | Journal eISSN: 1338-4287 | Journal ISSN: 0021-5597
Language: English
Page range: 145 - 156
Published on: Nov 27, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Silvie Cinková, Jana Šamánková, Barbora Kubíková, Tereza Novotná, Vítek Eichler, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.