References
- Aristotle (2004). Rhetoric. New York: Dover Publications.
- Bendová, K., and Cinková, S. (2021). Adaptation of Classic Readability Metrics to Czech. In 24th International Conference on Text, Speech and Dialogue. Cham, Switzerland: Springer, pp. 159–171.
- Bhattacharya, P. et al. (2023). DeepRhole: Deep Learning for Rhetorical Role Labeling of Sentences in Legal Case Documents. Artificial Intelligence and Law, 31(1), pp. 53–90. Accessible at: https://doi.org/10.1007/s10506-021-09304-5.
- Cinková, S. (2024). Linguistic Factors in the Readability of Czech Administrative and Legal Texts. In: Z. Bohušová – M. Dove (eds.): To Understand Is to Be Free. Interdisciplinary Aspects of Comprehensibility and Understanding. Vienna, Austria: Praesens Verlag, pp. 303–325.
- DuBay, W. H. (2004). The Principles of Readability. Costa Mesa, California: Impact Information. Accessible at: https://www.researchgate.net/publication/228965813_The_Principles_of_Readability.
- Gardner, J. A. (1993). Legal Argument: The Structure and Language of Effective Advocacy. LexisNexis. Accessible at: https://store.lexisnexis.com/en-us/legal-argument--the-structure-and-language-of-effective-advocacy-sku-us-ebook-03082-epub.html.
- Grover, C., Hachey, B., and Korycinski, C. (2003). Summarising Legal Texts: Sentential Tense and Argumentative Roles. In Proceedings of the HLT-NAACL 03 Text Summarization Workshop, pp. 33–40. Accessible at: https://aclanthology.org/W03-0505/.
- Habernal, I. et al. (2024). Mining Legal Arguments in Court Decisions. Artificial Intelligence and Law, 32(3), pp. 1–38. Accessible at: https://doi.org/10.1007/s10506-023-09361-y.
- Malik, V. et al. (2022). Semantic Segmentation of Legal Documents via Rhetorical Roles. In: N. Aletras et al. (eds.): Proceedings of the Natural Legal Language Processing Workshop 2022. Abu Dhabi, United Arab Emirates (Hybrid): Association for Computational Linguistics, pp. 153–171. Accessible at: https://doi.org/10.18653/v1/2022.nllp-1.13.
- Poudyal, P. et al. (2020). ECHR: Legal Corpus for Argument Mining. In: E. Cabrio – S. Villata (eds.): Proceedings of the 7th Workshop on Argument Mining. Online: Association for Computational Linguistics, pp. 67–75. Accessible at: https://aclanthology.org/2020.argmining-1.8/.
- Šavelka, J., and Ashley, K. D. (2018). Segmenting U.S. Court Decisions into Functional and Issue Specific Parts. In Frontiers in Artificial Intelligence and Applications. IOS Press. Accessible at: https://doi.org/10.3233/978-1-61499-935-5-111.
- Song, H., and Schwarz, N. (2010). If It’s Easy to Read, It’s Easy to Do, Pretty, Good, and True. Bulletin of the British Psychological Society, 23(2), pp. 108–111.
- Teruel, M. et al. (2018). Increasing Argument Annotation Reproducibility by Using Inter-Annotator Agreement to Improve Guidelines. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018).
- Tyler, T. R. (1990). Why People Obey the Law. New Haven and London: Yale University Press.
- de Vargas Feijó, D., and Moreira, V. P. (2018). RulingBR: A Summarization Dataset for Legal Texts. In: A. Villavicencio et al. (eds.): Computational Processing of the Portuguese Language. Cham: Springer International Publishing, pp. 255–264.
- Wagner, W., and Walker, W. (2019). Incomprehensible!: A Study of How Our Legal System Encourages Incomprehensibility, Why It Matters, and What We Can Do About It. Cambridge Core. Cambridge: Cambridge University Press. Accessible at: https://doi.org/10.1017/9781139051774.
- Yamada, H., Teufel, S., and Tokunaga, T. (2019). Building a Corpus of Legal Argumentation in Japanese Judgement Documents: Towards Structure-Based Summarisation. Artificial Intelligence and Law, 27(2), pp. 141–170. Accessible at: https://doi.org/10.1007/s10506-019-09242-3.