Have a personal or library account? Click to login
Text Vectorization Techniques Based on Wordnet Cover
Open Access
|Dec 2023

References

  1. Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit, 1st ed. Beijing; Cambridge Mass. O’Reilly Media.
  2. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv, May 24, 2019. Accessed: Mar. 26, 2023. [Online]. Accessible at: http://arxiv.org/abs/1810.04805.
  3. Glenski, M., Sealy, W. I., Miller, K., and Arendt, D. (2021). Improving Synonym Recommendation Using Sentence Context. In Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing, pages 74–78. Accessible at: doi 10.18653/v1/2021.sustainlp-1.9.
  4. Haralabopoulos, G., Torres, M. T., Anagnostopoulos, I., and McAuley, D. (2021). Text data augmentations: Permutation, antonyms and negation. Expert Systems with Applications, Vol. 177. Accessible at: doi 10.1016/j.eswa.2021.114769.
  5. Kobayashi, S. (2018). Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 452–457. New Orleans, Louisiana. Accessible at: doi 10.18653/v1/N18-2072.
  6. Marivate, V., and Sefara, T. (20202). Improving Short Text Classification Through Global Augmentation Methods. In Machine Learning and Knowledge Extraction, pages 385–399. Accessible at: doi 10.1007/978-3-030-57321-8_21.
  7. Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. ArXiv. Accessible at: doi 10.48550/arXiv.1301.3781.
  8. Miller, G. A. (1995). WordNet: A lexical database for English, Commun. ACM, 38(11), pages 39–41. Accessible at: doi 10.1145/219717.219748.
  9. Nazir, S, Asif, M., Sahi, S. A., Ahmad, S., Ghadi, Y. Y., and Aziz, M. H. (2022). Toward the Development of Large-Scale Word Embedding for Low-Resourced Language. IEEE Access, Vol. 10, pages 54091–54097. Accessible at: doi 10.1109/ACCESS.2022.3173259.
  10. Pellicer, L. F. A. O., Ferreira, T. M., and Costa, A. H. R. (2023). Data augmentation techniques in natural language processing. Applied Soft Computing, Vol. 132. Accessible at: doi 10.1016/j.asoc.2022.109803.
  11. Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543. Doha, Qatar. Accessible at: doi 10.3115/v1/D14-1162.
  12. Risdal, M. (2016). Getting Real about Fake News, Kaggle. Accessible at: doi 10.34740/KAGGLE/DSV/911.
  13. Rossum, G. V. (1999). Python Library Reference. To Excel Inc.
  14. Řehurek, R., and Sojka, P. (2010). Software Framework for Topic Modelling with Large Corpora, pages 45–50. Accessible at: doi 10.13140/2.1.2393.1847.
  15. Shi, Y., Zheng, Y., Guo, K., Zhu, L., and Qu, Y. (2018). Intrinsic or Extrinsic Evaluation: An Overview of Word Embedding Evaluation. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pages 1255–1262. Singapore. Accessible at: doi 10.1109/ICDMW.2018.00179.
  16. Verma, P. K., Agrawal, P., Amorim, I., and Prodan, R. (2021). WELFake: Word Embedding Over Linguistic Features for Fake News Detection. IEEE Trans. Comput. Soc. Syst., 8(4), pages 881–893. Accessible at: doi 10.1109/TCSS.2021.3068519.
  17. Wang, W. Y., and Yang, D. (2015). That’s So Annoying‼!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using #petpeeve Tweets. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2557–2563. Lisbon, Portugal. Accessible at: doi 10.18653/v1/D15-1306.
  18. Wei, J., and Zou, K. (2019). EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. arXiv, Aug. 25, 2019. Accessible at: doi 10.48550/arXiv.1901.11196.
  19. Zhai, M., Tan, J., and Choi, J. (2016). Intrinsic and Extrinsic Evaluations of Word Embeddings. AAAI, 30(1). Accessible at: doi 10.1609/aaai.v30i1.9959.
DOI: https://doi.org/10.2478/jazcas-2023-0048 | Journal eISSN: 1338-4287 | Journal ISSN: 0021-5597
Language: English
Page range: 310 - 322
Published on: Dec 25, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Dávid Držík, Kirsten Šteflovič, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.