Have a personal or library account? Click to login
Open Access
|Dec 2021

References

  1. [1] Behera, P. (2017). An Experiment with the CRF++ Parts of Speech (POS) Tagger for Odia Language in India, 17(1), pages 18–40.
  2. [2] Loftsson, H. (2008). Tagging Icelandic text: A linguistic rule-based approach. Nordic Journal of Linguistics, 31(1), pages 47–72.10.1017/S0332586508001820
  3. [3] Dandapat, S., Sarkar, S., and Basu, A. (2007). Automatic Part-of-Speech Tagging for Bengali: An Approach for Morphologically Rich Languages in a Poor Resource Scenario. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 221–224, Association for Computational Linguistics.10.3115/1557769.1557833
  4. [4] Rajendran, S., and Krishnakumar. K. (2019). A Comprehensive Study of Shallow Parsing and Machine Translation in Malaylam. Coimbatore: Amrita Vishwa Vidyapeetham, 295 p.
  5. [5] Uludoğan, G. (2018). HMM POS tagger. Accessible at: https://github.com/gokceuludogan/hmm-pos-tagger.
  6. [6] Jurish, B. (2003). A Hybrid Approach to Part-of-Speech Tagging. Berlin: Berlin-Brandenburgishe Akademie der Wissenschaften, 2003, 27 p.
  7. [7] (UD) UPOS tag set. Accessible at: https://universaldependencies.org/u/pos/.
  8. [8] Mohamed Elhadj, Y. O. (2009). Statistical Part-of-Speech Tagger for Traditional Arabic Texts. Journal of Computer Science, 5(11), pages 794–800.
  9. [9] Danso, S., and Lamb, W. (2014). Developing an Automatic Part-of-Speech Tagger for Scottish Gaelic. In Proceedings of the First Celtic Language Technology Workshop, pages 1–5, ACL.
  10. [10] Mirzanezhad, Z., and Feizi-Derakhshi, M.-R. (2016). Using morphological analyzer to statistical POS Tagging on Persian Text. IJCSIS, 14(8), pages 1093–1103.
  11. [11] Abumalloh, R. A., Al-Sarhan, H. M., Ibrahim, O. B., and Abu-Ulbeh, W. (2016). Arabic Part-of-Speech Tagging. Journal of Soft Computing and Decision Support Systems, 3(2), pages 45–52.
  12. [12] Kumar, S. S., Kumar, M. A., and Soman, K. P. (2016). Experimental analysis of Malayalam PoS tagger using EPIC framework in Scala. ARPN Journal of Engineering and Applied Sciences, 11(13), pages 8017–8023.
  13. [13] Gambäck, B., Olsson, F., Argaw, A. A., and Asker, L. (2009). Methods for Amharic Part-of-Speech Tagging. In Proceedings of the EACL 2009 Workshop on Language Technologies for African Languages, pages 104–111, ACL.10.3115/1564508.1564527
  14. [14] Saharia, N., Das, D., Sharma, S., and Kalita, J. (2009). Part of Speech Tagger for Assamese Text. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 33–36, World Scientific Publishing Co Pte Ltd.10.3115/1667583.1667595
  15. [15] Reddy, S., and Sharoff, S. (2011). Cross Language POS Taggers (and other Tools) for Indian Languages: An Experiment with Kannada using Telugu Resources. In Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 11–19, Asian Federation of Natural Language Processing.
  16. [16] Kann, K. et al. (2018). Character-level supervision for low-resource POS tagging. In Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 1–11, Association for Computational Linguistics.10.18653/v1/W18-3401
  17. [17] Straka, M., Strakova, J., and Hajič, J. (2019). Czech Text Processing with Contextual Embeddings: POS Tagging, Lemmatization, Parsing and NER. In Proceedings of 22nd International Conference “Text, Speech and Dialogue” 2019, pages 137–150, TSD.10.1007/978-3-030-27947-9_12
  18. [18] Hajič, J., and Hladká, B. (1998). Czech language processing, POS tagging. Accessible at: https://ufal.mff.cuni.cz/czech-tagging/HajicHladkaLREC1998.pdf.
  19. [19] Korobov, M. (2015). Morphological Analyzer and Generator for Russian and Ukrainian Languages. Analysis of Images, Social Networks and Texts, pages 320–332.10.1007/978-3-319-26123-2_31
  20. [20] Bird, S., Loper, E., and Klein, E. (2009). Natural Language Processing with Python. O’Reilly Media Inc, 479 p.
  21. [21] Segalovich, I. (2003). A Fast Morphological Algorithm with Unknown Word Guessing Induced by a Dictionary for a Web Search Engine. In Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications, pages 273–280, MLMTA’03, June 23–26, 2003, Las Vegas, Nevada, USA.
  22. [22] Eckhoff, H. M., and Berdicevskis, A. (2015). Linguistics vs. digital editions: The Tromsø Old Russian and OCS Treebank. Scripta & e-Scripta 2015, 14(15), pages 9–25.
  23. [23] Pedrazzini, N., and Eckhoff, H. M. (2021). OldSlavNet: A scalable Early Slavic dependency parser trained on modern language data. Software Impacts, 8. Accessible at: https://www.sciencedirect.com/science/article/pii/S2665963821000117.
  24. [24] TITUS. Accessible at: http://titus.uni-frankfurt.de/indexe.htm.
  25. [25] Manuscript. Accessible at: http://manuscripts.ru/.
  26. [26] Zeman, D., Nivre, J., Abrams, M. et al. (2020). Universal Dependencies 2.7. LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. Accessible at: http://hdl.handle.net/11234/1-3424.
  27. [27] Haug, D. T. T., and Jøhndal, M. L. (2008). Creating a Parallel Treebank of the Old Indo-European Bible Translations. In Proceedings of the Second Workshop on Language Technology for Cultural Heritage Data (LaTeCH 2008), pages 27–34, ACM, New York, NY.
  28. [28] Straka, M., Hajič, J., and Straková, J. (2016). UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Parsing. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Portorož, Slovenia. Accessible at: https://ufal.mff.cuni.cz/~straka/papers/2016-lrec_udpipe.pdf.
  29. [29] Straka, M., Straková, J., and Hajič, J. (2019). Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing. In Arxiv.org Computing Research Repository, ISSN 2331-8422, 1904.02099.
  30. [30] Kamphuis, J. (2020). Verbal Aspect in Old Church Slavonic: A Corpus-based Approach. Leiden: Brill, 329 p.10.1163/9789004422032
  31. [31] Strobl, C., Malley, J., and Tutz, G. (2009). An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests. Psychological Methods, 14(4), pages 323–348.10.1037/a0016973
  32. [32] Kiev Folia. Accessible at: http://www.schaeken.nl/lu/research/online/editions/kievfol.html.
  33. [33] Afanasev, I. (2020). Korpus staroslavianskogo iazyka: nedostaiushchee zveno v diakhronicheskoi slavistike. In Slavica iuvenum xxI: sbornik trudov mezhdunarodnoi nauchnoi konferentsii Slavica iuvenum 2020, March 31–April 1, 2020, pages 13–21, Ostravskii universitet, Ostrava.
  34. [34] Project GitHub Repository. Accessible at: https://github.com/The-One-Who-Speaks-and-Depicts/hmm-pos-tagger.
  35. [35] Helmut, S. (1994). Probabilistic Part-of-Speech Tagging Using Decision Trees. In Proceedings of International Conference on New Methods in Language Processing, pages 1–9, Manchester, UK. Accessible at: https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/tree-tagger2.pdf.
  36. [36] Simov, K., Osenova, P., and Slavcheva, M. (2004). BTB-TR03: BulTreeBank Morphosyntactic Tagset. Accessible at: http://bultreebank.org/wp-content/uploads/2017/06/BTB-TR03.pdf.
  37. [37] Schmid, H., and Laws, F. (2008). Estimation of Conditional Probabilities with Decision Trees and an Application to Fine-Grained POS Tagging. Accessible at: https://cis.lmu.de/~schmid/papers/Schmid-Laws.pdf.
DOI: https://doi.org/10.2478/jazcas-2021-0051 | Journal eISSN: 1338-4287 | Journal ISSN: 0021-5597
Language: English
Page range: 556 - 567
Published on: Dec 30, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Olga Lyashevskaya, Ilia Afanasev, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.