References
- Al-Ghamdi, A., Al-Abbadi, A. A., Khan, K. A., Ghramh, H. A., Ahmed, A. M., Ansari, M. J. (2020). In vitro antagonistic potential of gut bacteria isolated from indigenous honey bee race of Saudi Arabia against Paenibacillus larvae. Journal of Apicultural Research, 59(5), 825-833. https://doi.org/10.1080/00218839.2019.1706912
- Anjum, S. I., Aldakheel, F., Shah, A. H., Khan, S., Ullah, A., Hussain, R., … Mohammed, O. B. (2021). Honey bee gut an unexpected niche of human pathogen. Journal of King Saud University -Science, 33(1), 101247. https://doi.org/10.1016/j.jksus.2020.101247
- Borges, D., Guzman-Novoa, E., Goodwin, P. H. (2021). Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms, 9(3), 481. https://doi.org/10.3390/microorganisms9030481
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869
- Carreck, N., & Williams, I. (1998). The economic value of bees in the UK. Bee World, 79(3), 115-123. https://doi.org/10.1080/0005772X.1998.11099393
- Chen, S., Chen, L., Qi, Y., Xu, J., Ge, Q., Fan, Y. … Wang, L. (2021). Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species. Nature Aging, 1(11), 991-1001. https://doi.org/10.1038/s43587-021-00129-0
- Daisley, B. A., & Reid, G. (2021). BEExact: A metataxonomic database tool for high-resolution inference of bee-associated microbial communities. mSystems, 6(2), e00082-21. https://doi.org/10.1128/mSystems.00082-21
- Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome, 6(1), 226. https://doi.org/10.1186/s40168-018-0605-2
- Dosselli, R., Grassl, J., Carson, A., Simmons, L. W., Baer, B. (2016). Flight behaviour of honey bee (Apis mellifera) workers is altered by initial infections of the fungal parasite Nosema apis. Scientific Reports, 6, 36649. https://doi.org/10.1038/srep36649
- Du, Y., Luo, S., Zhou, X. (2021). Enterococcus faecium regulates honey bee developmental genes. International Journal of Molecular Sciences, 22(22), 12105. https://doi.org/10.3390/ijms222212105
- Dussaubat, C., Maisonnasse, A., Crauser, D., Beslay, D., Costagliola, G., Soubeyrand, S., … Le Conte, Y. (2013). Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. Journal of Invertebrate Pathology, 113(1), 42-51. https://doi.org/10.1016/j.jip.2013.01.002
- Engel, P., Kwong, W. K., McFrederick, Q., Anderson, K. E., Barribeau, S. M., Chandler, J. A. … Dainat, B. (2016). The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. mBio, 7(2), e02164-02115. https://doi.org/10.1128/mBio.02164-15
- European and Mediterranean Plant Protection Organization. (2010). PP 1/170 (4): Side-effects on honeybees. EPPO Bulletin, 40(3), 313-319. https://doi.org/10.1111/j.1365-2338.2010.02418.x
- Gisder, S., Schüler, V., Horchler, L. L., Groth, D., Genersch, E. (2017). Long-term temporal trends of Nosema spp. infection prevalence in Northeast Germany: Continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Frontiers in Cellular and Infection Microbiology, 7, 301. https://doi.org/10.3389/fcimb.2017.00301
- Huang, S., Zhang, C.-P., Wang, K., Li, G. Q., Hu, F.-L. (2014). Recent advances in the chemical composition of propolis. Molecules (Basel, Switzerland), 19(12), 19610-19632. https://doi.org/10.3390/molecules191219610
- Insolia, L., Molinari, R., Rogers, S. R., Williams, G. R., Chiaromonte, F., Calovi, M. (2022). Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Scientific Reports, 12(1), 20787. https://doi.org/10.1038/s41598-022-24946-4
- Kešnerová, L., Emery, O., Troilo, M., Liberti, J., Erkosar, B., Engel, P. (2020). Gut microbiota structure differs between honeybees in winter and summer. The ISME Journal, 14(3), 801-814. https://doi.org/10.1038/s41396-019-0568-8
- Kwong, W. K., & Moran, N. A. (2016). Gut microbial communities of social bees. Nature Reviews. Microbiology, 14(6), 374-384. https://doi.org/10.1038/nrmicro.2016.43
- Lang, H., Duan, H., Wang, J., Zhang, W., Guo, J., Zhang, X., Hu, X., Zheng, H. (2022). Specific strains of honeybee gut Lactobacillus stimulate host immune system to protect against pathogenic Hafnia alvei. Microbiology Spectrum, 10(1), e0189621. https://doi.org/10.1128/spectrum.01896-21
- Lanh, P. T., Duong, B. T. T., Thu, H. T., Hoa, N. T., Yoo, M. S., Cho, Y. S., Quyen, D. V. (2022). The gut microbiota at different developmental stages of Apis cerana reveals potential probiotic bacteria for improving honeybee health. Microorganisms, 10(10), 1938. https://doi.org/10.3390/microorganisms10101938
- Lau, E., Maccaro, J., McFrederick, Q. S., Nieh, J. C. (2024). Exploring the interactions between Nosema ceranae infection and the honey bee gut microbiome. Scientific Reports, 14(1), 20037. https://doi.org/10.1038/s41598-024-67796-y
- Li, C., Tang, M., Li, X., Zhou, X. (2022). Community dynamics in structure and function of honey bee gut bacteria in response to winter dietary shift. mBio, 13(5), e0113122. https://doi.org/10.1128/mbio.01131-22
- Li, J. H., Evans, J. D., Li, W. F., Zhao, Y. Z., DeGrandi-Hoffman, G., Huang, S. K., … Chen, Y. P. (2017). New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection. PloS One, 12(11), e0187505. https://doi.org/10.1371/journal.pone.0187505
- Lu, L.-F., Yang, Y., Chai, L.-J., Lu, Z.-M., Zhang, L.-Q., Qin, H., … Shen, C.-H. (2021). Blautia liquoris sp. nov., isolated from the mud in a fermentation cellar used for the production of Chinese strong-flavour liquor. International Journal of Systematic and Evolutionary Microbiology, 71(10). https://doi.org/10.1099/ijsem.0.005041
- Martín-Hernández, R., Meana, A., Prieto, L., Salvador, A. M., Garrido-Bailón, E., Higes, M. (2007). Outcome of colonization of Apis mellifera by Nosema ceranae. Applied and Environmental Microbiology, 73(20), 6331-6338. https://doi.org/10.1128/AEM.00270-07
- Mayack, C., & Naug, D. (2009). Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertebrate Pathology, 100(3), 185-188. https://doi.org/10.1016/j.jip.2008.12.001
- Miłek, M., Bonikowski, R. Dżugan, M. (2024) The effect of extraction conditions on the chemical profile of obtained raw poplar propolis extract. Chemical Papers 78, 6709-6720. https://doi.org/10.1007/s11696-024-03567-3
- Mortensen, A. N., Jack, C. J., McConnell, M., Teigen, L., Ellis, J. (2016). How to quantify Nosema spores infection rate in a honey bee colony. Electronic Data Information Source, 5, ENY-167. https://doi.org/10.32473/edis-in1123-2016
- Motta, E. V. S., & Moran, N. A. (2024). The honeybee microbiota and its impact on health and disease. Nature Reviews. Microbiology, 22(3), 122-137. https://doi.org/10.1038/s41579-023-00990-3
- Mura, A., Pusceddu, M., Theodorou, P., Angioni, A., Floris, I., Paxton, R. J., Satta, A. (2020). Propolis consumption reduces Nosema ceranae infection of European honey bees (Apis mellifera). Insects, 11(2), 124. https://doi.org/10.3390/insects11020124
- Naree, S., Ellis, J. D., Benbow, M. E., Suwannapong, G. (2021). The use of propolis for preventing and treating Nosema ceranae infection in western honey bee (Apis mellifera Linnaeus, 1787) workers. Journal of Apicultural Research, 60(5), 686-696. https://doi.org/10.1080/00218839.2021.1905374
- Östervald, F. (2024). The effect of diet on the intestinal microbiome during overwintering in Apis mellifera Buckfast living in Sweden [Bachelor’s Degree Project in Bioscience, University of Skövde]. https://his.diva-portal.org/smash/get/diva2:1875403/FULLTEXT01.pdf
- Panek, J., Paris, L., Roriz, D., Mone, A., Dubuffet, A., Delbac, F., Diogon, M., El Alaoui, H. (2018). Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis mellifera. Journal of Invertebrate Pathology, 159, 121-128. https://doi.org/10.1016/j.jip.2018.09.007
- Powell, J. E., Carver, Z., Leonard, S. P., Moran, N. A. (2021). Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiology Spectrum, 9(1), e0010321. https://doi.org/10.1128/Spectrum.00103-21
- Ptaszyńska, A. A., Borsuk, G., Mułenko, W., Olszewski, K. (2013). Impact of ethanol on Nosema spp. infected bees. Medycyna Weterynaryjna, 69(12), 736-740.
- Sforcin, J. M. (2016). Biological properties and therapeutic applications of propolis. Phytotherapy Research: PTR, 30(6), 894-905. https://doi.org/10.1002/ptr.5605
- Sinpoo, C., Paxton, R. J., Disayathanoowat, T., Krongdang, S., Chantawannakul, P. (2018). Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response. Journal of Insect Physiology, 105, 1-8. https://doi.org/10.1016/j.jinsphys.2017.12.010
- Socha, R., Gałkowska, D., Bugaj, M., Juszczak, L. (2015). Phenolic composition and antioxidant activity of propolis from various regions of Poland. Natural Product Research, 29(5), 416-422. https://doi.org/10.1080/14786419.2014.949705
- Trytek, M., Buczek, K., Zdybicka-Barabas, A., Wojda, I., Borsuk, G., Cytryńska, M., Lipke, A., Gryko, D. (2022). Effect of amide protoporphyrin derivatives on immune response in Apis mellifera. Scientific Reports, 12(1), 14406. https://doi.org/10.1038/s41598-022-18534-9
- Tsadila, C., Amoroso, C., Mossialos, D. (2023). Microbial diversity in bee species and bee products: Pseudomonads contribution to bee well-being and the biological activity exerted by honey bee products: A narrative review. Diversity, 15(10), Article 10. https://doi.org/10.3390/d15101088
- Yemor, T., Phiancharoen, M., Eric Benbow, M., Suwannapong, G. (2015). Effects of stingless bee propolis on Nosema ceranae infected Asian honey bees, Apis cerana. Journal of Apicultural Research, 54(5), 468-473. https://doi.org/10.1080/00218839.2016.1162447
- Zaghloul, H. A. H., & El Halfawy, N. M. (2022). Genomic insights into antibiotic-resistance and virulence genes of Enterococcus faecium strains from the gut of pis mellifera. Microbial Genomics, 8(11), mgen000896. https://doi.org/10.1099/mgen.0.000896