Have a personal or library account? Click to login
Relationships between Flower Opening Time, Environmental Conditions, Corolla Opening Size and Nectar Production in Five Winter Oilseed Rape (Brassica napus L.) Cultivars in China Cover

Relationships between Flower Opening Time, Environmental Conditions, Corolla Opening Size and Nectar Production in Five Winter Oilseed Rape (Brassica napus L.) Cultivars in China

Open Access
|Jun 2023

References

  1. An, C., Hu, D., Dong, H., Hu, X. (1982). Statistical analysis of flowering patterns of Brassica napus L. Journal of Gansu Agricultural University(02), 25–37.
  2. Bertsch, A. (1983). Nectar production of Epilobium angustifolium L. at different air humidities; nectar sugar in individual flowers and the optimal foraging theory. Oecologia, 59(1), 40–48. http://doi.org/10.1007/BF00388069
  3. Bodó, A., Farkas, Á., Nagy, D. U., Rudolf, K., Hoffmann, R., Kocsis, M., ... Morschhauser, T. (2021). Soil humus, iron, sulphate and magnesium content affect nectar traits of wild garlic (Allium ursinum L.). Plants, 10(3), 597. https://doi.org/10.3390/plants10030597
  4. Bommarco, R., Marini, L., Vaissière, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 169(4), 1025–1032. https://doi.org/10.1007/s00442-012-2271-6
  5. Burquez, A., & Corbet, S. A. (1991). Do flowers reabsorb nectar? Functional Ecology, 5(3), 369–379. https://doi.org/10.2307/2389808
  6. Carruthers, J. M., Cook, S. M., Wright, G. A., Osborne, J. L., Clark, S. J., Swain, J. L., ... Haughton, A. J. (2017). Oilseed rape (Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems. Global Change Biology Bioenergy, 9(8), 1370–1379. https://doi.org/10.1111/gcbb.12438
  7. Chabert, S., Lemoine, T., Cagnato, M. R., Morison, N., Vaissière, B. E. (2018). Flower age expressed in thermal time: is nectar secretion synchronous with pistil receptivity in oilseed rape (Brassica napus L.)? Environmental and Experimental Botany, 155, 628–640. https://doi.org/10.1016/j.envexpbot.2018.08.004
  8. Corbet, S. A., Unwin, D. M., Prŷs-Jones, O. E. (1979). Humidity, nectar and insect visits to flowers, with special reference to Crataegus, Tilia and Echium. Ecological Entomology, 4(1), 9–22. https://doi.org/10.1111/j.1365-2311.1979.tb00557.x
  9. Davis, A. R., Fowke, L. C., Sawhney, V. K., Low, N. H. (1996). Floral nectar secretion and ploidy in Brassica rapa and B. napus (Brassicaceae). II. quantified variability of nectary structure and function in rapid-cycling lines. Annals of Botany, 77(3), 223–234. https://doi.org/10.1006/ANBO.1996.0026
  10. Davis, A. R., Sawhney, V. K., Fowke, L. C., Low, N. H. (1994). Floral nectar secretion and ploidy in Brassica rapa and B. napus (Brassicaceae). I. Nectary size and nectar carbohydrate production and composition. Apidologie, 25(6), 602–614. https://doi.org/10.1051/APIDO:19940611
  11. Eisikowitch, D. (1981). Some aspects of pollination of oil-seed rape (Brassica napus L.). Journal of Agricultural Science, 96(2), 321–326. https://doi.org/10.1017/S0021859600066107
  12. Enkegaard, A., Kryger, P., Boelt, B. (2016). Determinants of nectar production in oilseed rape. Journal of Apicultural Research, 55(1), 89–99. https://doi.org/10.1080/00218839.2016.1192341
  13. Farkas, Á. (2008). Nectar production and nectar sugar composition of three oilseed rape (Brassica napus) cultivars in Hungary. Acta Horticulturae, 767, 275–284. http://doi.org/10.17660/ActaHortic.2008.767.29
  14. Food and Agriculture Organization of the United Nations. (2022). Online Statistical Database. Retrieved December 19, 2022, from http://faostat.fao.org/default.aspx
  15. Gan, G., Zou, J., Chen, X., Zhu, H., Jin, H., ... Li, J. (2022). Research status of rape production pattern and fertilization in China. Hubei Agricultural Sciences, 61(01), 5–11. https://doi.org/10.14088/j.cnki.issn0439-8114.2022.01.001
  16. Gao, Y., & Zhao, Z. (2018). Investigation and discussion on honey price in China. Apiculture of China, 69(08), 63–65. http://doi.org/10.3969/j.issn.0412-4367.2018.08.036
  17. Hassan, A. M. A., Giovanetti, M., Raweh, H. S. A., Owayss, A. A., Ansari, M. J., Nuru, A., ... Alqarni, A. S. (2017). Nectar secretion dynamics of Ziziphus nummularia: a melliferous species of dry land ecosystems. Saudi Journal of Biological Sciences, 24(7), 1470–1474. http://doi.org/10.1016/j.sjbs.2017.01.059
  18. Kevan, P. G., Lee, H., Shuel, R. W. (1991). Sugar ratios in nectars of varieties of canola (Brassica napus). Journal of Apicultural Research, 30(2), 99–102. https://doi.org/10.1080/00218839.1991.11101240
  19. Kołtowski, Z. (2002). Beekeeping value of recently cultivated winter rapeseed cultivars. Journal of Apicultural Science, 46(2), 23–33.
  20. Liu, G., & Thornburg, R. W. (2012). Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. The Plant Journal, 70(3), 377–388. http://doi.org/10.1111/j.1365-313X.2011.04875.x
  21. Lu, N., Li, X., Li, L., Zhao, Z. (2015). Variation of nectar production in relation to plant characteristics in protandrous Aconitum gymnandrum. Journal of Plant Ecology, 8(2), 122–129. http://doi.org/10.1093/jpe/rtv020
  22. Mesquida, J., Marilleau, R., Pham Delegue, M., Renard, M. (1988). A study of rapeseed (Brassica napus L. var. oleifera Metzger) flower nectar secretions. Apidologie, 19(3), 307–318. http://doi.org/10.1051/APIDO:19880309
  23. Mohr, N. A., & Jay, S. C. (1990). Nectar production of selected cultivars of Brassica campestris L. and Brassica napus L. Journal of Apicultural Research, 29(2), 95–100. http://doi.org/10.1080/00218839.1990.11101203
  24. Morandin, L. A., & Winston, M. L. (2006). Pollinators provide economic incentive to preserve natural land in agroecosystems. Agriculture Ecosystems & Environment, 116(3–4), 289–292. http://doi.org/10.1016/j.agee.2006.02.012
  25. Morgan, G. A., Leech, N. L., Gloeckner, G. W., Barrett, K. C. (2004). SPSS for introductory statistics: use and interpretation (Second Editioned.). New York: Psychology Press.
  26. National Bureau of Statistics of China. (2021). China statistical yearbook. Beijing: China Statistics Press.
  27. National Bureau of Statistics of China. (2022). Sown area of major crops. Retrieved December 19, 2022, from http://www.stats.gov.cn/
  28. Nepi, M., & Stpiczyńska, M. (2008). The complexity of nectar: secretion and resorption dynamically regulate nectar features. Naturwissenschaften, 95(3), 177–184. http://doi.org/10.1007/s00114-007-0307-2
  29. Nicolson, S. W. (1998). The importance of osmosis in nectar secretion and its consumption by insects. American Zoologist, 38(3), 418–425. http://doi.org/10.1093/icb/38.3.418
  30. Petanidou, T., & Smets, E. (1996). Does temperature stress induce nectar secretion in Mediterranean plants? New Phytologist, 133(3), 513–518. http://doi.org/10.1111/j.1469-8137.1996.tb01919.x
  31. Picard-Nizou, A. L., Pham-Delègue, M. H., Kerguelen, V., Douault, P., Marilleau, R., Olsen, L., ... Masson, C. (1995). Foraging behaviour of honey bees (Apis mellifera L.) on transgenic oilseed rape (Brassica napus L. var. oleifera). Transgenic Research, 4(4), 270–276. http://doi.org/10.1007/BF01969121
  32. Pierre, J., Mesquida, J., Marilleau, R., Pham-Delègue, M. H., Renard, M. (1999). Nectar secretion in winter oilseed rape, Brassica napus - quantitative and qualitative variability among 71 genotypes. Plant Breeding, 118(6), 471–476. http://doi.org/10.1046/j.1439-0523.1999.00421.x
  33. Pinzauti, M. (1986). The influence of the wind on nectar secretion from the melon and on the flight of bees: the use of an artificial wind-break. Apidologie, 1(17), 63–72. http://doi.org/10.1051/APIDO:19860106
  34. Pyke, G. H. (2016). Floral nectar: pollinator attraction or manipulation? Trends in Ecology & Evolution, 31(5), 339–341. https://doi.org/10.1016/j.tree.2016.02.013
  35. Rosa, A. D. S., Blochtein, B., Lima, D. K. (2011). Honey bee contribution to canola pollination in Southern Brazil. Scientia Agricola, 68(2), 255–259. http://doi.org/10.1590/S0103-90162011000200018
  36. She, B., Huang, J., Guo, R., Wang, H., Wang, J. (2015). Assessing winter oilseed rape freeze injury based on Chinese HJ remote sensing data. Journal of Zhejiang University-Science B, 16(2), 131–144. http://doi.org/10.1631/jzus.B1400150
  37. Shu, J., Liu, Y., Zhang, L., Li, Z., Fang, Z., Yang, L., ... Lv, H. (2019). Evaluation and selection of sources of cytoplasmic male sterility in broccoli. Euphytica, 215(7), 125. http://doi.org/10.1007/s10681-019-2453-y
  38. Smanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229(1), 107–113. http://doi.org/10.1007/s00217-009-1031-2
  39. Sun, S., Huang, Z., Chen, Z., Huang, S. (2017). Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii). American Journal of Botany, 104(3), 468–476. http://doi.org/10.3732/ajb.1600428
  40. Takkis, K., Tscheulin, T., Petanidou, T. (2018). Differential effects of climate warming on the nectar secretion of early- and late-flowering Mediterranean plants. Frontiers in Plant Science, 9, 874. http://doi.org/10.3389/fpls.2018.00874
  41. Takkis, K., Tscheulin, T., Tsalkatis, P., Petanidou, T. (2015). Climate change reduces nectar secretion in two common Mediterranean plants. AoB Plants, 7, plv111. http://doi.org/10.1093/aobpla/plv111
  42. Torres, C., & Galetto, L. (1998). Patterns and implications of floral nectar secretion, chemical composition, removal effects and standing crop in Mandevilla pentlandiana (Apocynaceae). Botanical Journal of the Linnean Society, 127(3), 207–223. http://doi.org/10.1111/j.1095-8339.1998.tb02098.x
  43. Walker, A. K., Barnes, D. K., Furgala, B. (1974). Genetic and environmental effects on quantity and quality of alfalfa nectar. Crop Science, 14(2), 235–238. http://doi.org/10.2135/CROPSCI1974.0011183X001400020020X
  44. Wen, Y., Zhang, J., Yi, L., Chen, L., Zhao, W., Zhou, J., ... Yue, J. (2017). Characterization of Chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis. Molecules, 22(5), 735. http://doi.org/10.3390/molecules22050735
  45. Williams, I. H. (1978). The pollination requirements of swede rape (Brassica napus L.) and of turnip rape (Brassica campestris L.). The Journal of Agricultural Science, 91(2), 343–348. http://doi.org/10.1017/S0021859600046438
DOI: https://doi.org/10.2478/jas-2023-0005 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 57 - 72
Submitted on: Jan 2, 2023
Accepted on: Apr 4, 2023
Published on: Jun 30, 2023
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Ran Liu, Zhijun Wei, Cheng Liang, Yongquan Huang, Guiling Ding, Yusuo Jiang, Jiaxing Huang, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution 4.0 License.