References
- Arathi, H.S., & Spivak, M. (2001). Influence of colony genotypic composition on the performance of hygienic behavior in the honey bee (Apis mellifera L.). Animal Behavior, 62(1), 57–66. DOI: 10.1006/anbe.2000.1731
- Baer, B., & Schmid-Hempel, P. (1999). Experimental variation in polyandry affects parasite loads and fitness in a bumblebee. Nature, 397(6715), 151–154. DOI: 10.1038/16451
- Beaurepaire, A. (2022). Sisters from another father can honey bee intra-colonial diversity buffer the impact of diseases? EurBee - 9th European Congress of Apidology, 20–22. September 2022, Belgrade, Serbia: Abstracts Book. DOI: 10.5281/zenodo.7239012
- Berthoud, H., Imdorf, A., Haueter, M., Radloff, S., Neumann, P. (2010). Virus infections and winter losses of honey bee colonies (Apis mellifera). Journal of Apicultural Research, 49(1), 60–65. DOI: 10.3896/IBRA.1.49.1.08
- Cantwell, G. E. (1970). Standard methods for counting Nosema spores. American Bee Journal, 110(6), 222–223.
- Carreck, N. L., Ball, B. V., Martin, S. J. (2010). Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. Journal of Apicultural Research, 49(1), 93–94. https://doi.org/10.3896/IBRA.1.49.1.13
- Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., ... Lipkin, W. I. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318(5848), 283–287. DOI: 10.1126/science.1146498
- Currie, R.W., & Tahmasbi, G. H. (2008). The ability of high- and low grooming lines of honey bees to remove the parasitic mite Varroa destructor is affected by environmental conditions. Canadian Journal of Zoology, 86, 1059–1067. https://doi.org/10.1139/Z08-083
- Desai, S.D., & Currie, R.W. (2015). Genetic diversity within honey bee colonies affects pathogen load and relative virus levels in honey bees, Apis mellifera L. Behavioral Ecology and Sociobiology, 69, 1527–1541. https://doi.org/10.1007/s00265-015-1965-2
- Forsgren, E., & Fries, I. (2013). Temporal study of Nosema spp. Environmental Microbiology Reports, 5(1), 78–82. https://doi.org/10.1111/j.1758-2229.2012.00386.x
- Gary, N. E., & Page, R. E. (1987). Phenotypic variation in susceptibility of honey bees, Apis mellifera, to infestation by tracheal mites, Acarapis woodi. Experimental and Applied Acarology 3, 291–305.
- Gerula, D., Węgrzynowicz, P., Panasiuk, B., Bieńkowska, M., Skowronek, W. (2014). Performance of bee colonies headed by queens instrumentally inseminated with semen of drones who come from a single colony or many colonies. Journal of Apicultural Science, 58(2), 87–97. https://doi.org/10.2478/jas-2014-0025
- Gillespie, J. P., Kanost, M. R., Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611–643. DOI: 10.1146/annurev.ento.42.1.611
- Gilliam M., Taber S., Lorenz B. J., Prest D. B. (1988). Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. Journal of Invertebrate Pathology, 52, 314–325.
- Guzman L. I., Rinderer T. E., Delatte G. T., Macchiavelli R. E. (1996). Varroa jacobsoni Oudemans tolerance in selected stocks of Apis mellifera L. Apidologie, 27(4), 193–210. DOI: 10.1051/apido:19960402
- Hatjina, F., Tsoktouridis, G., Bouga, M., Charistos, L., Evangelou, V., Avtzis, D., ... de Graaf, D.C. (2011). Polar tube protein gene diversity among Nosema ceranae strains derived from a Greek honey bee health study. Journal of Invertebrate Pathology, 108, 131–134. https://doi.org/10.1016/j.jip.2011.07.003
- Higes, M., Martín, R., Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 92, 93–95, https://doi.org/10.1016/j.jip.2006.02.005
- Higes, M., Martín-Hernández, R., Botías, C., Bailón, E.G., González-Porto, A.V., Barrios, L., ... P.G., Meana, A. (2008). How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology, 10(10), 2659–2669. https://doi.org/10.1111/j.1462-2920.2008.01687.x
- Human, H., Brodschneider, R., Dietemann, V., Dively, G., Ellis, J. D., Forsgren, E. … & Huo-Qing Zheng (2013). Miscellaneous standard methods for Apis mellifera research. Journal of Apicultural Research, 52(4), 1–53. DOI: 10.3896/IBRA.1.52.4.10
- Le Conte, Y., Ellis, M., Ritter, W. (2010). Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie, 41, 353–363. https://doi.org/10.1051/apido/2010017
- Martin, S. J., Ball, B. V., Carreck, N. L. (2010). Prevalence and persistence of deformed wing virus (DWV) in untreated or acaricide-treated Varroa destructor infested honey bee (Apis mellifera) colonies. Journal of Apicultural Research, 49, 72–79. https://doi.org/10.3896/IBRA.1.49.1.10
- Martin, S.J., Hardy, J., Villalobos, E., Martín-Hernández, R., Nikaido, S., Higes, M. (2013), DWV and Nosema interactions. Environmental Microbiology Reports, 5, 506–510. https://doi.org/10.1111/1758-2229.12052
- Martin, S.J., Highfield, A.C., Brettell, L., Villalobos, E.M., Budge, G.C., Powell, M., Schroeder, D.C. (2012). Global honeybee viral landscape altered by a parasitic mite. Science, 336, 1304–1306. DOI: 10.1126/science.1220941
- Mazur, E., & Gajda, A. (2022). Study of bee colony losses [Badanie strat rodzin pszczelich]. Pszczelarstwo, 6, 14–15.
- Mulholland G.E, Traver B.E, Johnson N.G, Fell R.D. (2012). Individual variability of Nosema ceranae infections in Apis mellifera colonies. Insects, 3(4), 1143–1155. https://doi.org/10.3390/insects3041143
- Neumann, P., & Moritz, R. (2000). Testing genetic variance hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.). Insectes Sociaux, 47, 271–279. https://doi.org/10.1007/PL00001714
- Page R. E., & Robinson G.E. (1991). The genetics of division of labour in honey bee colonies. Advances in Insect Physiology, 23, 117–169. https://doi.org/10.1016/S0065-2806(08)60093-4
- Paxton R.J. (2010) Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? Journal of Apicultural Research, 49(1), 80–84. DOI: 10.3896/IBRA.1.49.1.11
- Pohorecka K, Skubida M., Bober A., Zdańska D. (2019). Summary of the results of the five-year monitoring of the health status of bee colonies in the domestic apiaries. Book of Abstracts 56th Beekeeping Conference, Kazimierz Dolny 5–6 of March, 2019, 47–48
- Pohorecka K., Bober A., Skubida M., Zdańska D. (2011). Epizootic status of apiaries with massive losses of bee colonies (2008–2009). Journal of Apicultural Science, 55 (1), 137–150.
- Roberts, J., Simbiken, N., Dale, C., Armstrong, J., Anderson, D. L. (2020). Tolerance of honey bees to Varroa mite in the absence of deformed wing virus. Viruses, 12(5), 575. https://doi.org/10.3390/v12050575
- Rothenbuhler, W.C., & Thompson, V.C. (1956) Resistance to American foulbrood in honey bees. I. Differential survival of larvae of different genetic lines. Journal of Economic Entomology, 49, 470–475.
- Schmid-Hempel, P. (1998) Parasites in Social Insects. Princeton University Press, Princeton NJ. 392 pp.
- Schroeder, D. C. & Martin, S.J. (2012). Deformed wing virus, Virulence, 3, 7, 589–591. DOI: 10.4161/viru.22219
- Seeley, T.D., & Tarpy, D.R. (2007). Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society of London. Series B: Biological Sciences, 274, 67–72. DOI: 10.1098/rspb.2006.3702
- Sherman, P.W., Seeley T.D., Reeve H.K. (1988). Parasites, pathogens and polyandry in social Hymenoptera. The American Naturalist, 131, 602–610. DOI: 10.1086/284809
- Shykoff, J. A., & Schmid-Hempel, P. (1991). Parasites and the advantage of genetic variability within social insect colonies. Proceedings of the Royal Society of London. Series B: Biological Sciences, 243, 55–58. https://doi.org/10.1098/rspb.1991.0009
- Tarpy, D.R. (2003). Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 99–103. DOI: 10.1098/rspb.2002.2199
- Tarpy, D.R., & Seeley, T.D. (2006). Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften, 93, 195–199. DOI: 10.1007/s00114-006-0091-4
- TIBCO Software Inc. (2017). Statistica (data analysis software system), version 13. http://statistica.io
- Tokarev, Y.S., Huang, W.F., Solter, L. F., Malysh, J.M., Becnel, J.J. Vossbrinck, C.R. (2020). A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. Journal of Invertebrate Pathology, 169, 107279. https://doi.org/10.1016/j.jip.2019.107279.
- Topolska, G., Gajda, A., Hartwig, A. (2008). Polish honey bee colony-loss during the winter of 2007/2008. Journal of Apicultural Science, 52(2), 95–104.
- Topolska, G., Gajda, A., Pohorecka, K., Bober, A., Kasprzak, S., Skubida, M. Semkiw, P. (2010) Winter colony losses in Poland. Journal of Apicultural Research, 49(1), 126–128. DOI: 10.3896/IBRA.1.49.1.27
- Ugelvig, L.V., Kronauer, D.J., Schrempf, A., Heinze, J., Cremer, S. (2010). Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proceedings of the Royal Society B: Biological Sciences, 277, 2821–2828. https://doi.org/10.1098/rspb.2010.0644
- Wilkinson, D., & Smith, G.C. (2002). A model of the mite parasite, Varroa destructor, on honeybees (Apis mellifera) to investigate parameters important to mite population growth. Ecological Modelling, 148(30), 263–275. doi.org/10.1016/S0304-3800(01)00440-9
- Wilson-Rich, N., Spivak, M., Fefferman, N.H., Starks, P.T. (2009). Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Review of Entomology, 54, 405–423. DOI: 10.1146/annurev.ento.53.103106.093301
- Woyciechowski, M., & Król, E. (2001). Worker genetic diversity and infection by Nosema apis in honey bee colonies. Folia Biologica 49, 107–112. PMID: 11732162
- Woyciechowski, M., Król E., Figurny, E., Stachowicz, M., Tracz, M. (1994). Genetic diversity of workers and infection by the parasite Nosema apis in honeybee colonies (Apis melifera). In Proceedings of the 12th Congress International Union for the Study of Social Insects (ed. G. A. M. L. A. Lenoir). Paris: Universite´ Paris-Nord.