References
- Ahmed, M., Shafiq, M.I., Khaleeq, A., Huma, R., Qadir, M. A., Khalid, A., Ali, A., Samad, A. (2016). Physiochemical, Biochemical, Minerals Content Analysis, and Antioxidant Potential of National and International Honeys in Pakistan. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/8072305
- Al-Mamary, M., Al-Meeri, A., Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutrition Research, 22(9), 1041–1047. https://doi.org/10.1016/S0271-5317(02)00406-2
- Aljadi, A.M., & Kamaruddin, M.Y. (2004). Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry, 85(4), 513–518. https://doi.org/10.1016/S0308-8146(02)00596-4
- Alvarez-Suarez, J.M., Tulipani, S., Romandini, S., Bertoli, E., Battino, M. (2010). Contribution of honey in nutrition and human health: A review. Mediterranean Journal of Nutrition and Metabolism, 3(1), 15–23. https://doi.org/10.1007/s12349-009-0051-6
- Andersen, Ø. M., & Markham, K.R. (2005). Flavonoids: Chemistry, biochemistry and applications. 1st Edition, eBook ISBN 9780429121586, 1–1239. https://doi.org/10.1201/9781420039443
- Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63(4), 549–562. https://doi.org/10.1016/S0308-8146(98)00057-0
- Ballabio, D., Robotti, E., Grisoni, F., Quasso, F., Bobba, M., Vercelli, S., ... Marengo, E. (2018). Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chemistry, 266, 79–89. https://doi.org/10.1016/j.foodchem.2018.05.084
- Balog, J., Szaniszlo, T., Schaefer, K. C., Denes, J., Lopata, A., Godorhazy, L., … Takats, Z. (2010). Identification of biological tissues by rapid evaporative ionization mass spectrometry. Analytical Chemistry, 82(17), 7343–7350. https://doi.org/10.1021/ac101283x
- Behnke, K., & Janssen, M.F.W.H.A. (2020). Boundary conditions for traceability in food supply chains using blockchain technology. International Journal of Information Management, 52, 101969. https://doi.org/10.1016/j.ijinfomgt.2019.05.025
- Beretta, G., Granata, P., Ferrero, M., Orioli, M., Facino, R.M. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533(2), 185–191. https://doi.org/10.1016/j.aca.2004.11.010
- Bergamo, G., Tischer Seraglio, S.K., Gonzaga, L.V., Fett, R., Costa, A.C O. (2018). Mineral profile as a potential parameter for verifying the authenticity of bracatinga honeydew honeys. LWT, 97, 390–395. https://doi.org/10.1016/j.lwt.2018.07.028
- Berriel, V., Barreto, P., Perdomo, C. (2019). Characterisation of Uruguayan honeys by multi-elemental analyses as a basis to assess their geographical origin. In Foods, 8(1). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods8010024
- Bertoncelj, J., Doberšek, U., Jamnik, M., Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry, 105(2), 822–828. https://doi.org/10.1016/j.foodchem.2007.01.060
- Bilandžić, N., Tlak Gajger, I., Kosanović, M., Čalopek, B., Sedak, M., Solomun Kolanović, B., … Đokić, M. (2017). Essential and toxic element concentrations in monofloral honeys from southern Croatia. Food Chemistry, 234, 245–253. https://doi.org/10.1016/j.foodchem.2017.04.180
- Bogdanov, S. (2006). Contaminants of bee products. Apidologie, 37(1), 1–18. https://doi.org/10.1051/apido:2005043
- Bogdanov, S., Haldimann, M., Luginbühl, W., Gallmann, P. (2007). Minerals in honey: Environmental, geographical and botanical aspects. Journal of Apicultural Research, 46(4), 269–275. https://doi.org/10.1080/00218839.2007.11101407
- Bogdanov, S., & Martin, P. (2002). Honey Authenticity: a Review. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 93, 232–254.
- Bontempo, L., Camin, F., Ziller, L., Perini, M., Nicolini, G., Larcher, R. (2017). Isotopic and elemental composition of selected types of Italian honey. Measurement: Journal of the International Measurement Confederation, 98, 283–289. https://doi.org/10.1016/j.measurement.2015.11.022
- Bruni, I., Galimberti, A., Caridi, L., Scaccabarozzi, D., De Mattia, F., Casiraghi, M., Labra, M. (2015). A DNA barcoding approach to identify plant species in multiflower honey. Food Chemistry, 170, 308–315. https://doi.org/10.1016/j.foodchem.2014.08.060
- Cajka, T., Showalter, M.R., Riddellova, K., Fiehn, O. (2016). Advances in mass spectrometry for food authenticity testing: An omics perspective. Advances in Food Authenticity Testing, 171–200. https://doi.org/10.1016/B978-0-08-100220-9.00007-2
- Caro, M. P., Ali, M.S., Vecchio, M., Giaffreda, R. (2018). Blockchain-based traceability in Agri-Food supply chain management: A practical implementation. 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany, IOT Tuscany 2018, 1–4. https://doi.org/10.1109/IOT-TUSCANY.2018.8373021
- Cevallos-Cevallos, J.M., Reyes-De-Corcuera, J.I., Etxeberria, E., Danyluk, M.D., Rodrick, G.E. (2009). Metabolomic analysis in food science: a review. In Trends in Food Science and Technology, 20(11–12), 557–566. https://doi.org/10.1016/j.tifs.2009.07.002
- Chen, C.T., Chen, B.Y., Nai, Y.S., Chang, Y.M., Chen, K.H., Chen, Y.W. (2019). Novel inspection of sugar residue and origin in honey based on the 13C/12C isotopic ratio and protein content. Journal of Food and Drug Analysis, 27(1), 175–183. https://doi.org/10.1016/j.jfda.2018.08.004
- Chesson, L.A., Tipple, B.J., Erkkila, B.R., Ehleringer, J.R. (2013). Hydrogen and oxygen stable isotope analysis of pollen collected from honey. Grana, 52(4), 305–315. https://doi.org/10.1080/00173134.2013.841751
- Chua, L.S., Rahaman, N.L.A., Adnan, N.A., Eddie Tan, T.T. (2013). Antioxidant activity of three honey samples in relation with their biochemical components. Journal of Analytical Methods in Chemistry, 2013. https://doi.org/10.1155/2013/313798
- Codex Alimentarius Commission (2001). Codex Standard for Honey, CODEX STAN 12-1981. In Codex Alimentarius Commission FAO/OMS.
- Connolly, J.B., Wallace, A., Stead, S. (2016). Discrimination of Honey of Different Botanical Origins Using an Untargeted High-Definition. 2016.
- Consonni, R., & Cagliani, L. R. (2019). The potentiality of NMR-based metabolomics in food science and food authentication assessment. Magnetic Resonance in Chemistry, 57(9), 558–578. https://doi.org/10.1002/mrc.4807
- Conti, M.E., Canepari, S., Finoia, M.G., Mele, G., Astolfi, M.L. (2018). Characterization of Italian multifloral honeys on the basis of their mineral content and some typical quality parameters. Journal of Food Composition and Analysis, 74, 102–113. https://doi.org/10.1016/j.jfca.2018.09.002
- Conti, M.E., Stripeikis, J., Campanella, L., Cucina, D., Tudino, M.B. (2007). Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chemistry Central Journal, 1(1). https://doi.org/10.1186/1752-153X-1-14
- Corvucci, F., Nobili, L., Melucci, D., Grillenzoni, F.V. (2015). The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chemistry, 169, 297–304. https://doi.org/10.1016/j.foodchem.2014.07.122
- Cotte, J.F., Casabianca, H., Giroud, B., Albert, M., Lheritier, J., Grenier-Loustalot, M.F. (2004). Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Analytical and Bioanalytical Chemistry, 378(5), 1342–1350. https://doi.org/10.1007/s00216-003-2430-z
- Cubero-Leon, E., Peñalver, R., Maquet, A. (2014). Review on metabolomics for food authentication. Food Research International, 60, 95–107. https://doi.org/10.1016/j.foodres.2013.11.041
- Demestichas, K., Peppes, N., Alexakis, T., Adamopoulou, E. (2020). Blockchain in agriculture traceability systems: A review. Applied Sciences (Switzerland), 10(12), 1–22. https://doi.org/10.3390/APP10124113
- Devillers, J., Morlot, M., Pham-Delègue, M.H., Doré, J.C. (2004). Classification of monofloral honeys based on their quality control data. Food Chemistry, 86(2), 305–312. https://doi.org/10.1016/j.foodchem.2003.09.029
- Di Rosa, A.R., Leone, F., Cheli, F., Chiofalo, V. (2019). Novel approach for the characterisation of Sicilian honeys based on the correlation of physico-chemical parameters and artificial senses. Italian Journal of Animal Science, 18(1), 38–397. https://doi.org/10.1080/1828051X.2018.1530962
- Dinca, O. R., Ionete, R.E., Popescu, R., Costinel, D., Radu, G. L. (2015). Geographical and Botanical Origin Discrimination of Romanian Honey Using Complex Stable Isotope Data and Chemometrics. Food Analytical Methods, 8(2), 401–412. https://doi.org/10.1007/s12161-014-9903-x
- Donarski, J.A., Jones, S.A., Charlton, A.J. (2008). Application of Cryoprobe 1H Nuclear Magnetic Resonance Spectroscopy and Multivariate Analysis for the Verification of Corsican Honey. Journal of Agricultural and Food Chemistry, 56(14), 5451–5456. https://doi.org/10.1021/jf072402x
- Dong, H., Xiao, K., Xian, Y. (2017). Isotope Ratio Mass Spectrometry Coupled to Element Analyzer and Liquid Chromatography to Identify Commercial Honeys of Various Botanical Types. Food Analytical Methods, 10(8), 2755–2763. https://doi.org/10.1007/s12161-017-0842-1
- Dżugan, M., Tomczyk, M., Sowa, P., Grabek-Lejko, D. (2018). Antioxidant activity as biomarker of honey variety. Molecules, 23(8), 2069. https://doi.org/10.3390/molecules23082069
- Engel, M.M.S. (1999). The taxonomy of recent and fossil honey bees (Hymenoptera Apidae Apis). Journal of Hymenoptera Research, 8(2), 165–196.
- Everstine, K., Spink, J., Kennedy, S. (2013). Economically motivated adulteration (EMA) of food: Common characteristics of EMA incidents. Journal of Food Protection, 76(4), 723–735. https://doi.org/10.4315/0362-028X.JFP-12-399
- Fernández-Torres, R., Pérez-Bernal, J.L., Bello-López, M.Á., Callejón-Mochón, M., Jiménez-Sánchez, J. C., Guiraúm-Pérez, A. (2005). Mineral content and botanical origin of Spanish honeys. Talanta, 65(3), 686–691. https://doi.org/10.1016/j.talanta.2004.07.030
- France, I., Duller, A.W.G., Duller, G.A.T., Lamb, H. F. (2000). A new approach to automated pollen analysis. Quaternary Science Reviews, 19(6), 537–546. https://doi.org/10.1016/S0277-3791(99)00021-9
- Galvez, J.F., Mejuto, J.C., Simal-Gandara, J. (2018). Future challenges on the use of blockchain for food traceability analysis. TrAC - Trends in Analytical Chemistry, 107, 222–232. https://doi.org/10.1016/j.trac.2018.08.011
- Gomes, S., Dias, L.G., Moreira, L L., Rodrigues, P., Estevinho, L. (2010). Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 48(2), 544–548. https://doi.org/10.1016/j.fct.2009.11.029
- Gül, A., & Pehlivan, T. (2018). Antioxidant activities of some monofloral honey types produced across Turkey. Saudi Journal of Biological Sciences, 25(6), 1056–1065. https://doi.org/10.1016/j.sjbs.2018.02.011
- Haynes, E., Jimenez, E., Pardo, M.A., Helyar, S.J. (2019). The future of NGS (Next Generation Sequencing) analysis in testing food authenticity. Food Control, 101, 134–143. https://doi.org/10.1016/j.foodcont.2019.02.010
- Hermosín, I., Chicón, R.M., Cabezudo, M.D. (2003). Free amino acid composition and botanical origin of honey. Food Chemistry, 83(2), 263–268. https://doi.org/10.1016/S0308-8146(03)00089-X
- Hernández, O.M., Fraga, J.M.G., Jiménez, A.I., Jiménez, F., Arias, J.J. (2005). Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food Chemistry, 93(3), 449–458. https://doi.org/10.1016/j.foodchem.2004.10.036
- Holt, K., Allen, G., Hodgson, R., Marsland, S., Flenley, J. (2011). Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Review of Palaeobotany and Palynology, 167(3–4), 175–183. https://doi.org/10.1016/j.revpalbo.2011.08.006
- Louveaux J., Anna Maurizio A., Vorwohl G. (1970). Commission internationale de botanique apicole de l’uisb: les méthodes de la mélisso-palynologie. Apidologie, 1(2), 211–227.
- Janiszewska, K., Aniołowska, M., Nowakowski, P. (2012). Free amino acids content of honeys from Poland. Polish Journal of Food and Nutrition Sciences, 62(2), 85–89. https://doi.org/10.2478/v10222-011-0041-5
- Jovetić, M., Trifković, J., Stanković, D., Manojlović, D., Milojković-Opsenica, D. (2017). Mineral content as a tool for the assessment of honey authenticity. Journal of AOAC International, 100(4), 862–870. https://doi.org/10.5740/jaoacint.17-0145
- Kadar, M., Juan-Borrás, M., Carot, J.M., Domenech, E., Escriche, I. (2011). Volatile fraction composition and physicochemical parameters as tools for the differentiation of lemon blossom honey and orange blossom honey. Journal of the Science of Food and Agriculture, 91(15), 2768–2776. https://doi.org/10.1002/jsfa.4520
- Kamath, R. (2018). Food Traceability on Blockchain: Walmart’s Pork and Mango Pilots with IBM. The Journal of the British Blockchain Association, 1(1), 1–12. https://doi.org/10.31585/jbba-1-1-(10)2018
- Karabagias, I.K., Louppis, A.P., Kontakos, S., Drouza, C., Papastephanou, C. (2018). Characterization and Botanical Differentiation of Monofloral and Multifloral Honeys Produced in Cyprus, Greece, and Egypt Using Physicochemical Parameter Analysis and Mineral Content in Conjunction with Supervised Statistical Techniques. Journal of Analytical Methods in Chemistry, 2018. https://doi.org/10.1155/2018/7698251
- Kavanagh, S., Gunnoo, J., Marques Passos, T., Stout, J.C., White, B. (2019). Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chemistry, 272, 66–75. https://doi.org/10.1016/j.foodchem.2018.08.035
- Koulis, G.A., Tsagkaris, A.S., Aalizadeh, R., Dasenaki, M.E., Panagopoulou, E.I., Drivelos, S., … Thomaidis, N.S. (2021). Honey phenolic compound profiling and authenticity assessment using hrms targeted and untargeted metabolomics. Molecules, 26(9), 1–21. https://doi.org/10.3390/molecules26092769
- Lagerstrom, R., Holt, K., Arzhaeva, Y., Bischof, L., Haberle, S., Hopf, F., Lovell, D. (2015). Pollen Image Classification Using the Classifynder System: Algorithm Comparison and a Case Study on New Zealand Honey. Advances in Experimental Medicine and Biology, 823, 207–226. https://doi.org/10.1007/978-3-319-10984-8_12
- Laha, R.C., De Mandal, S., Ralte, L., Ralte, L., Kumar, N.S., Gurusubramanian, G., … Kuravadi, N.A. (2017). Meta-barcoding in combination with palynological inference is a potent diagnostic marker for honey floral composition. AMB Express, 7(1), 132. https://doi.org/10.1186/s13568-017-0429-7
- Lanjwani, M.F., & Channa, F.A. (2019). Minerals content in different types of local and branded honey in Sindh, Pakistan. Heliyon, 5(7). https://doi.org/10.1016/j.heliyon.2019.e02042
- Lastra-Mejías, M., Torreblanca-Zanca, A., Aroca-Santos, R., Cancilla, J.C., Izquierdo, J.G., Torrecilla, J. S. (2018). Characterization of an array of honeys of different types and botanical origins through fluorescence emission based on LEDs. Talanta, 185, 196–202. https://doi.org/10.1016/j.talanta.2018.03.060
- Laube, I., Hird, H., Brodmann, P., Ullmann, S., Schöne-Michling, M., Chisholm, J., Broll, H. (2010). Development of primer and probe sets for the detection of plant species in honey. Food Chemistry, 118(4), 979–986. https://doi.org/10.1016/j.foodchem.2008.09.063
- Leita, L., Muhlbachova, G., Cesco, S., Barbattini, R., Mondini, C. (1996). Investigation of the use of honey bees and honey bee products to assess heavy metals contamination. Environmental Monitoring and Assessment, 43(1), 1–9. https://doi.org/10.1007/BF00399566
- Lin, J., Shen, Z., Zhang, A., Chai, Y. (2018). Blockchain and IoT based Food Traceability for Smart Agriculture. December, 1–6. https://doi.org/10.1145/3265689.3265692
- Liu, S., Lang, D., Meng, G., Hu, J., Tang, M., Zhou, X. (2022). Tracing the origin of honey products based on metagenomics and machine learning. Food Chemistry, 371, 131066. https://doi.org/10.1016/j.foodchem.2021.131066
- Louppis, A.P., Karabagias, I.K., Kontakos, S., Kontominas, M.G., Papastephanou, C. (2017). Botanical discrimination of Greek unifloral honeys based on mineral content in combination with physicochemical parameter analysis, using a validated chemometric approach. Microchemical Journal, 135, 180–189. https://doi.org/10.1016/j.microc.2017.09.004
- Louveaux, J., Maurizio, A., Vorwohl, G. (1978). Methods of Melissopalynology. Bee World, 59(4), 139–157. https://doi.org/10.1080/0005772x.1978.11097714
- Magdas, D.A., Guyon, F., Puscas, R., Vigouroux, A., Gaillard, L., Dehelean, A., Feher, I., Cristea, G. (2021). Applications of emerging stable isotopes and elemental markers for geographical and varietal recognition of Romanian and French honeys. Food Chemistry; 334(1), 127599. https://doi.org/10.1016/j.foodchem.2020.127599
- Rizelio, V.M., Gonzaga, L.V., Borges, G.D.S.C., França Maltez, H., Costa, A.C.O., Fett, R. (2012). Fast determination of cations in honey by capillary electrophoresis: A possible method for geographic origin discrimination. Talanta, 99, 450–456. https://doi.org/10.1016/j.talanta.2012.06.009
- Mary Hall. (n.d.). Oracle Blockchain Verifies Real Honey. https://blogs.oracle.com/blockchain/post/oracle-blockchain-verifies-real-honey
- Mendes, E., Brojo Proença, E., Ferreira, I.M.P.L.V.O., Ferreira, M.A. (1998). Quality evaluation of Portuguese honey. Carbohydrate Polymers, 37(3), 219–223. https://doi.org/10.1016/S0144-8617(98)00063-0
- Minaei, S., Shafiee, S., Polder, G., Moghadam-Charkari, N., van Ruth, S., Barzegar, M., … Kuś, P.M. (2017). VIS/NIR imaging application for honey floral origin determination. Infrared Physics and Technology, 86, 218–225. https://doi.org/10.1016/j.infrared.2017.09.001
- Mititelu, M., Udeanu, D.I., Nedelescu, M., Neacsu, S.M., Nicoara, A.C., Oprea, E., Ghica, M. (2022). Quality Control of Different Types of Honey and Propolis Collected from Romanian Accredited Beekeepers and Consumer’s Risk Assessment. Crystals, 12(1), 1–18. https://doi.org/10.3390/cryst12010087
- Molan, P.C. (1998). The limitations of the methods of identifying the floral source of honeys. Bee World, 79(2), 59–68. https://doi.org/10.1080/0005772X.1998.11099381
- Noviyanto, A., & Abdulla, W.H. (2020). Honey botanical origin classification using hyperspectral imaging and machine learning. Journal of Food Engineering, 265, 109684. https://doi.org/10.1016/j.jfoodeng.2019.109684
- Oddo, L.P., Piazza, M.G., Sabatini, A.G., Accorti, M. (1995). Characterization of unifloral honeys. Apidologie, 26(6), 453–465. https://doi.org/10.1051/apido:19950602
- Oliveira, S.S., Alves, C.N., Boa Morte, E.S., de Freitas Santos Júnior, A., Araujo, R.G.O., Santos, D.C.M.B. (2019). Determination of essential and potentially toxic elements and their estimation of bioaccessibility in honeys. Microchemical Journal, 151, 104221. https://doi.org/10.1016/j.microc.2019.104221
- Oroian, M., Prisacaru, A., Hretcanu, E.C., Stroe, S.G., Leahu, A., Buculei, A. (2015). Heavy metals profile in honey as a potential indicator of botanical and geographical origin. International Journal of Food Properties, 19(8), 1825–1836. https://doi.org/10.1080/10942912.2015.1107578
- Patrignani, M., Bernardelli, C., Conforti, P.A., Malacalza, N.H., Yamul, D.K., Donati, E., Lupano, C.E. (2015). Geographical discrimination of honeys through antioxidant capacity, mineral content and colour. International Journal of Food Science and Technology, 50(12), 2598–2605. https://doi.org/10.1111/ijfs.12928
- Patti, G.J., Yanes, O., Siuzdak, G. (2012). Innovation: Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. https://doi.org/10.1038/nrm3314
- Perna, A., Intaglietta, I., Simonetti, A., Gambacorta, E. (2014). Metals in honeys from different areas of Southern Italy. Bulletin of Environmental Contamination and Toxicology, 92(3), 253–258. https://doi.org/10.1007/s00128-013-1177-2
- Perna, A.M., Grassi, G., Gambacorta, E., Simonetti, A. (2021). Minerals content in Basilicata region (southern Italy) honeys from areas with different anthropic impact. International Journal of Food Science and Technology, 56(9), 4465–4472. https://doi.org/10.1111/ijfs.15112
- Persano Oddo, L., & Bogdanov, S. (2004). Determination of honey botanical origin: problems and issues. Apidologie, 35(Suppl. 1), S2–S3. https://doi.org/10.1051/apido:2004044
- Persano Oddo, L., & Piro, R. (2004). Main European unifloral honeys: descriptive sheets. Apidologie, 35(Suppl. 1), S38–S81. https://doi.org/10.1051/api-do:2004049
- Rashed, M.N., & Soltan, M.E. (2004). Major and trace elements in different types of Egyptian mono-floral and non-floral bee honeys. Journal of Food Composition and Analysis, 17(6), 725–735. https://doi.org/10.1016/j.jfca.2003.10.004
- Reyes, N.J.F., Asesor, P.N., Albarracín, V.N., García, M.E., Espeche, M.L. (2019). Caracterización palinológica de la miel de un sector de la región chaqueña de la provincia de Tucumán (Argentina). Boletín de La Sociedad Argentina de Botánica, 54(3), 367–379. https://doi.org/10.31055/1851.2372.v54.n3.25360
- Rodríguez-Flores, M.S., Escuredo, O., Míguez, M., Seijo, M.C. (2019). Differentiation of oak honeydew and chestnut honeys from the same geographical origin using chemometric methods. Food Chemistry, 297, 124979. https://doi.org/10.1016/j.foodchem.2019.124979
- Rodriguez, I., Salud, S., Hortensia, G., Luis, U. J., Jodral, M. (2010). Characterisation of Sierra Morena citrus blossom honey (Citrus sp). International Journal of Food Science and Technology, 45(10), 2008–2015. https://doi.org/10.1111/j.1365-2621.2010.02359.x
- Rünzel, M.A.S., Hassler, E.E., Rogers, R.E.L., Formato, G., Cazier, J.A. (2021). Designing a Smart Honey Supply Chain for Sustainable Development. IEEE Consumer Electronics Magazine, 10(4), 69–78. https://doi.org/10.1109/MCE.2021.3059955
- Schellenberg, A., Chmielus, S., Schlicht, C., Camin, F., Perini, M., Bontempo, L., … Horacek, M. (2010). Multielement stable isotope ratios (H, C, N, S) of honey from different European regions. Food Chemistry, 121(3), 770–777. https://doi.org/10.1016/j.foodchem.2009.12.082
- Schiassi, M.C.E.V., de Souza, V.R., Lago, A.M.T., Carvalho, G.R., Curi, P.N., Guimarães, A.S., Queiroz, F. (2021). Quality of honeys from different botanical origins. Journal of Food Science and Technology, 58(11), 4167–4177. https://doi.org/10.1007/s13197-020-04884-7
- Schievano, E., Stocchero, M., Zuccato, V., Conti, I., Piana, L. (2019). NMR assessment of European acacia honey origin and composition of EU-blend based on geographical floral markers. Food Chemistry, 288, 96–101. https://doi.org/10.1016/j.foodchem.2019.02.062
- Sevillano, V., Holt, K., Aznarte, J.L. (2020). Precise automatic classification of 46 different pollen types with convolutional neural networks. PLoS ONE, 15(6), 1–15. https://doi.org/10.1371/journal.pone.0229751
- She, S., Chen, L., Song, H., Lin, G., Li, Y., Zhou, J., Liu, C. (2019). Discrimination of geographical origins of Chinese acacia honey using complex 13C/12C, oligosaccharides and polyphenols. Food Chemistry, 272(August 2018), 580–585. https://doi.org/10.1016/j.foodchem.2018.07.227
- Siddiqui, A. J., Musharraf, S.G., Choudhary, M.I., Rahman, A. ur. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687–698. https://doi.org/10.1016/j.foodchem.2016.09.001
- Soares, S., Amaral, J.S., Oliveira, M.B.P.P., Mafra, I. (2015). Improving DNA isolation from honey for the botanical origin identification. Food Control, 48, 130–136. https://doi.org/10.1016/j.foodcont.2014.02.035
- Soares, S., Amaral, J.S., Oliveira, M.B.P.P., Mafra, I. (2017). A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1072–1100. https://doi.org/10.1111/1541-4337.12278
- Sobolev, A.P., Circi, S., Capitani, D., Ingallina, C., Mannina, L. (2017). Molecular fingerprinting of food authenticity. Current Opinion in Food Science, 16, 59–66. https://doi.org/10.1016/j.cofs.2017.08.002
- Solayman, M., Islam, M.A., Paul, S., Ali, Y., Khalil, M.I., Alam, N., Gan, S.H. (2016). Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219–233. https://doi.org/10.1111/1541-4337.12182
- Soria, A. C., González, M., De Lorenzo, C., Martínez-Castro, I., Sanz, J. (2004). Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85(1), 121–130. https://doi.org/10.1016/j.foodchem.2003.06.012
- Souza-Kruliski, C.R. de, Ducatti, C., Venturini Filho, W.G., Orsi, R. de O., Silva, E.T. (2010). Estudo de adulteração em méis brasileiros através de razão isotópica do carbono. Ciência e Agrotecnologia, 34(2), 434–439. https://doi.org/10.1590/s1413-70542010000200023
- Squadrone, S., Brizio, P., Stella, C., Mantia, M., Pederiva, S., Brusa, F., ... Abete, M.C. (2020). Trace elements and rare earth elements in honeys from the Balkans, Kazakhstan, Italy, South America, and Tanzania. Environmental Science and Pollution Research, 27(11), 12646–12657. https://doi.org/10.1007/s11356-020-07792-7
- Srivastava, A., & Dashora, K. (2022). Application of blockchain technology for agrifood supply chain management: a systematic literature review on benefits and challenges. Benchmarking, January. https://doi.org/10.1108/BIJ-08-2021-0495
- Stefas, D., Gyftokostas, N., Kourelias, P., Nanou, E., Kokkinos, V., Bouras, C., Couris, S. (2021). A laser-based method for the detection of honey adulteration. Applied Sciences (Switzerland), 11(14), 1–14. https://doi.org/10.3390/app11146435
- Suhandy, D., & Yulia, M. (2021). Using UV-Visible spectroscopy coupled with linear discrimination analysis to discriminate between monofloral and multifloral honey from Indonesia. AIP Conference Proceedings, 2342. https://doi.org/10.1063/5.0045325
- Tomczyk, M., Tarapatskyy, M., Dżugan, M. (2019). The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech Journal of Food Sciences, 37(4), 232–238. https://doi.org/10.17221/40/2019-CJFS
- Tosun, M. (2013). Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chemistry, 138(2–3), 1629–1632. https://doi.org/10.1016/j.food-chem.2012.11.068
- Trifković, J., Andrić, F., Ristivojević, P., Guzelmeric, E., Yesilada, E. (2017). Analytical methods in tracing honey authenticity. Journal of AOAC International, 100(4), 827–839. https://doi.org/10.5740/jaoacint.17-0142
- Uršulin-Trstenjak, N., Puntarić, D., Levanić, D., Gvozdić, V., Pavlek, Ž., Puntarić, A., … Vidosavljević, M. (2017). Pollen, Physicochemical, and Mineral Analysis of Croatian Acacia Honey Samples: Applicability for Identification of Botanical and Geographical Origin. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/8538693
- Utzeri, V. J., Ribani, A., Schiavo, G., Bertolini, F., Bovo, S., Fontanesi, L. (2018). Application of next generation semiconductor based sequencing to detect the botanical composition of monofloral, polyfloral and honeydew honey. Food Control, 86, 342–349. https://doi.org/10.1016/j.foodcont.2017.11.033
- Vanhanen, L. P., Emmertz, A., Savage, G.P. (2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1), 236–240. https://doi.org/10.1016/j.foodchem.2011.02.064
- Von Der Ohe, W., Persano Oddo, L., Piana, M.L., Morlot, M., Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35(Suppl. 1), S18–S25. https://doi.org/10.1051/apido:2004050
- Wang, H., Cao, X., Han, T., Pei, H., Ren, H., Stead, S. (2019). A novel methodology for real-time identification of the botanical origins and adulteration of honey by rapid evaporative ionization mass spectrometry. Food Control, 106, 106753. https://doi.org/10.1016/j.foodcont.2019.106753
- Wu, L., Du, B., Vander Heyden, Y., Chen, L., Zhao, L., Wang, M., Xue, X. (2017). Recent advancements in detecting sugar-based adulterants in honey-A challenge. TrAC - Trends in Analytical Chemistry, 86, 25–38. https://doi.org/10.1016/j.trac.2016.10.013
- Zheng, X., Zhao, Y., Wu, H., Dong, J., Feng, J. (2016). Origin Identification and Quantitative Analysis of Honeys by Nuclear Magnetic Resonance and Chemometric Techniques. Food Analytical Methods, 9(6), 1470–1479. https://doi.org/10.1007/s12161-015-0325-1
- Zhou, X., Taylor, M. P., Salouros, H., Prasad, S. (2018). Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-32764-w