Have a personal or library account? Click to login
Honey Traceability and Authenticity. Review of Current Methods Most Used to Face this Problem Cover

Honey Traceability and Authenticity. Review of Current Methods Most Used to Face this Problem

Open Access
|Dec 2022

References

  1. Ahmed, M., Shafiq, M.I., Khaleeq, A., Huma, R., Qadir, M. A., Khalid, A., Ali, A., Samad, A. (2016). Physiochemical, Biochemical, Minerals Content Analysis, and Antioxidant Potential of National and International Honeys in Pakistan. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/8072305
  2. Al-Mamary, M., Al-Meeri, A., Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutrition Research, 22(9), 1041–1047. https://doi.org/10.1016/S0271-5317(02)00406-2
  3. Aljadi, A.M., & Kamaruddin, M.Y. (2004). Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry, 85(4), 513–518. https://doi.org/10.1016/S0308-8146(02)00596-4
  4. Alvarez-Suarez, J.M., Tulipani, S., Romandini, S., Bertoli, E., Battino, M. (2010). Contribution of honey in nutrition and human health: A review. Mediterranean Journal of Nutrition and Metabolism, 3(1), 15–23. https://doi.org/10.1007/s12349-009-0051-6
  5. Andersen, Ø. M., & Markham, K.R. (2005). Flavonoids: Chemistry, biochemistry and applications. 1st Edition, eBook ISBN 9780429121586, 1–1239. https://doi.org/10.1201/9781420039443
  6. Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63(4), 549–562. https://doi.org/10.1016/S0308-8146(98)00057-0
  7. Ballabio, D., Robotti, E., Grisoni, F., Quasso, F., Bobba, M., Vercelli, S., ... Marengo, E. (2018). Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chemistry, 266, 79–89. https://doi.org/10.1016/j.foodchem.2018.05.084
  8. Balog, J., Szaniszlo, T., Schaefer, K. C., Denes, J., Lopata, A., Godorhazy, L., … Takats, Z. (2010). Identification of biological tissues by rapid evaporative ionization mass spectrometry. Analytical Chemistry, 82(17), 7343–7350. https://doi.org/10.1021/ac101283x
  9. Behnke, K., & Janssen, M.F.W.H.A. (2020). Boundary conditions for traceability in food supply chains using blockchain technology. International Journal of Information Management, 52, 101969. https://doi.org/10.1016/j.ijinfomgt.2019.05.025
  10. Beretta, G., Granata, P., Ferrero, M., Orioli, M., Facino, R.M. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533(2), 185–191. https://doi.org/10.1016/j.aca.2004.11.010
  11. Bergamo, G., Tischer Seraglio, S.K., Gonzaga, L.V., Fett, R., Costa, A.C O. (2018). Mineral profile as a potential parameter for verifying the authenticity of bracatinga honeydew honeys. LWT, 97, 390–395. https://doi.org/10.1016/j.lwt.2018.07.028
  12. Berriel, V., Barreto, P., Perdomo, C. (2019). Characterisation of Uruguayan honeys by multi-elemental analyses as a basis to assess their geographical origin. In Foods, 8(1). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods8010024
  13. Bertoncelj, J., Doberšek, U., Jamnik, M., Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry, 105(2), 822–828. https://doi.org/10.1016/j.foodchem.2007.01.060
  14. Bilandžić, N., Tlak Gajger, I., Kosanović, M., Čalopek, B., Sedak, M., Solomun Kolanović, B., … Đokić, M. (2017). Essential and toxic element concentrations in monofloral honeys from southern Croatia. Food Chemistry, 234, 245–253. https://doi.org/10.1016/j.foodchem.2017.04.180
  15. Bogdanov, S. (2006). Contaminants of bee products. Apidologie, 37(1), 1–18. https://doi.org/10.1051/apido:2005043
  16. Bogdanov, S., Haldimann, M., Luginbühl, W., Gallmann, P. (2007). Minerals in honey: Environmental, geographical and botanical aspects. Journal of Apicultural Research, 46(4), 269–275. https://doi.org/10.1080/00218839.2007.11101407
  17. Bogdanov, S., & Martin, P. (2002). Honey Authenticity: a Review. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 93, 232–254.
  18. Bontempo, L., Camin, F., Ziller, L., Perini, M., Nicolini, G., Larcher, R. (2017). Isotopic and elemental composition of selected types of Italian honey. Measurement: Journal of the International Measurement Confederation, 98, 283–289. https://doi.org/10.1016/j.measurement.2015.11.022
  19. Bruni, I., Galimberti, A., Caridi, L., Scaccabarozzi, D., De Mattia, F., Casiraghi, M., Labra, M. (2015). A DNA barcoding approach to identify plant species in multiflower honey. Food Chemistry, 170, 308–315. https://doi.org/10.1016/j.foodchem.2014.08.060
  20. Cajka, T., Showalter, M.R., Riddellova, K., Fiehn, O. (2016). Advances in mass spectrometry for food authenticity testing: An omics perspective. Advances in Food Authenticity Testing, 171–200. https://doi.org/10.1016/B978-0-08-100220-9.00007-2
  21. Caro, M. P., Ali, M.S., Vecchio, M., Giaffreda, R. (2018). Blockchain-based traceability in Agri-Food supply chain management: A practical implementation. 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany, IOT Tuscany 2018, 1–4. https://doi.org/10.1109/IOT-TUSCANY.2018.8373021
  22. Cevallos-Cevallos, J.M., Reyes-De-Corcuera, J.I., Etxeberria, E., Danyluk, M.D., Rodrick, G.E. (2009). Metabolomic analysis in food science: a review. In Trends in Food Science and Technology, 20(11–12), 557–566. https://doi.org/10.1016/j.tifs.2009.07.002
  23. Chen, C.T., Chen, B.Y., Nai, Y.S., Chang, Y.M., Chen, K.H., Chen, Y.W. (2019). Novel inspection of sugar residue and origin in honey based on the 13C/12C isotopic ratio and protein content. Journal of Food and Drug Analysis, 27(1), 175–183. https://doi.org/10.1016/j.jfda.2018.08.004
  24. Chesson, L.A., Tipple, B.J., Erkkila, B.R., Ehleringer, J.R. (2013). Hydrogen and oxygen stable isotope analysis of pollen collected from honey. Grana, 52(4), 305–315. https://doi.org/10.1080/00173134.2013.841751
  25. Chua, L.S., Rahaman, N.L.A., Adnan, N.A., Eddie Tan, T.T. (2013). Antioxidant activity of three honey samples in relation with their biochemical components. Journal of Analytical Methods in Chemistry, 2013. https://doi.org/10.1155/2013/313798
  26. Codex Alimentarius Commission (2001). Codex Standard for Honey, CODEX STAN 12-1981. In Codex Alimentarius Commission FAO/OMS.
  27. Connolly, J.B., Wallace, A., Stead, S. (2016). Discrimination of Honey of Different Botanical Origins Using an Untargeted High-Definition. 2016.
  28. Consonni, R., & Cagliani, L. R. (2019). The potentiality of NMR-based metabolomics in food science and food authentication assessment. Magnetic Resonance in Chemistry, 57(9), 558–578. https://doi.org/10.1002/mrc.4807
  29. Conti, M.E., Canepari, S., Finoia, M.G., Mele, G., Astolfi, M.L. (2018). Characterization of Italian multifloral honeys on the basis of their mineral content and some typical quality parameters. Journal of Food Composition and Analysis, 74, 102–113. https://doi.org/10.1016/j.jfca.2018.09.002
  30. Conti, M.E., Stripeikis, J., Campanella, L., Cucina, D., Tudino, M.B. (2007). Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chemistry Central Journal, 1(1). https://doi.org/10.1186/1752-153X-1-14
  31. Corvucci, F., Nobili, L., Melucci, D., Grillenzoni, F.V. (2015). The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chemistry, 169, 297–304. https://doi.org/10.1016/j.foodchem.2014.07.122
  32. Cotte, J.F., Casabianca, H., Giroud, B., Albert, M., Lheritier, J., Grenier-Loustalot, M.F. (2004). Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Analytical and Bioanalytical Chemistry, 378(5), 1342–1350. https://doi.org/10.1007/s00216-003-2430-z
  33. Cubero-Leon, E., Peñalver, R., Maquet, A. (2014). Review on metabolomics for food authentication. Food Research International, 60, 95–107. https://doi.org/10.1016/j.foodres.2013.11.041
  34. Demestichas, K., Peppes, N., Alexakis, T., Adamopoulou, E. (2020). Blockchain in agriculture traceability systems: A review. Applied Sciences (Switzerland), 10(12), 1–22. https://doi.org/10.3390/APP10124113
  35. Devillers, J., Morlot, M., Pham-Delègue, M.H., Doré, J.C. (2004). Classification of monofloral honeys based on their quality control data. Food Chemistry, 86(2), 305–312. https://doi.org/10.1016/j.foodchem.2003.09.029
  36. Di Rosa, A.R., Leone, F., Cheli, F., Chiofalo, V. (2019). Novel approach for the characterisation of Sicilian honeys based on the correlation of physico-chemical parameters and artificial senses. Italian Journal of Animal Science, 18(1), 38–397. https://doi.org/10.1080/1828051X.2018.1530962
  37. Dinca, O. R., Ionete, R.E., Popescu, R., Costinel, D., Radu, G. L. (2015). Geographical and Botanical Origin Discrimination of Romanian Honey Using Complex Stable Isotope Data and Chemometrics. Food Analytical Methods, 8(2), 401–412. https://doi.org/10.1007/s12161-014-9903-x
  38. Donarski, J.A., Jones, S.A., Charlton, A.J. (2008). Application of Cryoprobe 1H Nuclear Magnetic Resonance Spectroscopy and Multivariate Analysis for the Verification of Corsican Honey. Journal of Agricultural and Food Chemistry, 56(14), 5451–5456. https://doi.org/10.1021/jf072402x
  39. Dong, H., Xiao, K., Xian, Y. (2017). Isotope Ratio Mass Spectrometry Coupled to Element Analyzer and Liquid Chromatography to Identify Commercial Honeys of Various Botanical Types. Food Analytical Methods, 10(8), 2755–2763. https://doi.org/10.1007/s12161-017-0842-1
  40. Dżugan, M., Tomczyk, M., Sowa, P., Grabek-Lejko, D. (2018). Antioxidant activity as biomarker of honey variety. Molecules, 23(8), 2069. https://doi.org/10.3390/molecules23082069
  41. Engel, M.M.S. (1999). The taxonomy of recent and fossil honey bees (Hymenoptera Apidae Apis). Journal of Hymenoptera Research, 8(2), 165–196.
  42. Everstine, K., Spink, J., Kennedy, S. (2013). Economically motivated adulteration (EMA) of food: Common characteristics of EMA incidents. Journal of Food Protection, 76(4), 723–735. https://doi.org/10.4315/0362-028X.JFP-12-399
  43. Fernández-Torres, R., Pérez-Bernal, J.L., Bello-López, M.Á., Callejón-Mochón, M., Jiménez-Sánchez, J. C., Guiraúm-Pérez, A. (2005). Mineral content and botanical origin of Spanish honeys. Talanta, 65(3), 686–691. https://doi.org/10.1016/j.talanta.2004.07.030
  44. France, I., Duller, A.W.G., Duller, G.A.T., Lamb, H. F. (2000). A new approach to automated pollen analysis. Quaternary Science Reviews, 19(6), 537–546. https://doi.org/10.1016/S0277-3791(99)00021-9
  45. Galvez, J.F., Mejuto, J.C., Simal-Gandara, J. (2018). Future challenges on the use of blockchain for food traceability analysis. TrAC - Trends in Analytical Chemistry, 107, 222–232. https://doi.org/10.1016/j.trac.2018.08.011
  46. Gomes, S., Dias, L.G., Moreira, L L., Rodrigues, P., Estevinho, L. (2010). Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 48(2), 544–548. https://doi.org/10.1016/j.fct.2009.11.029
  47. Gül, A., & Pehlivan, T. (2018). Antioxidant activities of some monofloral honey types produced across Turkey. Saudi Journal of Biological Sciences, 25(6), 1056–1065. https://doi.org/10.1016/j.sjbs.2018.02.011
  48. Haynes, E., Jimenez, E., Pardo, M.A., Helyar, S.J. (2019). The future of NGS (Next Generation Sequencing) analysis in testing food authenticity. Food Control, 101, 134–143. https://doi.org/10.1016/j.foodcont.2019.02.010
  49. Hermosín, I., Chicón, R.M., Cabezudo, M.D. (2003). Free amino acid composition and botanical origin of honey. Food Chemistry, 83(2), 263–268. https://doi.org/10.1016/S0308-8146(03)00089-X
  50. Hernández, O.M., Fraga, J.M.G., Jiménez, A.I., Jiménez, F., Arias, J.J. (2005). Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food Chemistry, 93(3), 449–458. https://doi.org/10.1016/j.foodchem.2004.10.036
  51. Holt, K., Allen, G., Hodgson, R., Marsland, S., Flenley, J. (2011). Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Review of Palaeobotany and Palynology, 167(3–4), 175–183. https://doi.org/10.1016/j.revpalbo.2011.08.006
  52. Louveaux J., Anna Maurizio A., Vorwohl G. (1970). Commission internationale de botanique apicole de l’uisb: les méthodes de la mélisso-palynologie. Apidologie, 1(2), 211–227.
  53. Janiszewska, K., Aniołowska, M., Nowakowski, P. (2012). Free amino acids content of honeys from Poland. Polish Journal of Food and Nutrition Sciences, 62(2), 85–89. https://doi.org/10.2478/v10222-011-0041-5
  54. Jovetić, M., Trifković, J., Stanković, D., Manojlović, D., Milojković-Opsenica, D. (2017). Mineral content as a tool for the assessment of honey authenticity. Journal of AOAC International, 100(4), 862–870. https://doi.org/10.5740/jaoacint.17-0145
  55. Kadar, M., Juan-Borrás, M., Carot, J.M., Domenech, E., Escriche, I. (2011). Volatile fraction composition and physicochemical parameters as tools for the differentiation of lemon blossom honey and orange blossom honey. Journal of the Science of Food and Agriculture, 91(15), 2768–2776. https://doi.org/10.1002/jsfa.4520
  56. Kamath, R. (2018). Food Traceability on Blockchain: Walmart’s Pork and Mango Pilots with IBM. The Journal of the British Blockchain Association, 1(1), 1–12. https://doi.org/10.31585/jbba-1-1-(10)2018
  57. Karabagias, I.K., Louppis, A.P., Kontakos, S., Drouza, C., Papastephanou, C. (2018). Characterization and Botanical Differentiation of Monofloral and Multifloral Honeys Produced in Cyprus, Greece, and Egypt Using Physicochemical Parameter Analysis and Mineral Content in Conjunction with Supervised Statistical Techniques. Journal of Analytical Methods in Chemistry, 2018. https://doi.org/10.1155/2018/7698251
  58. Kavanagh, S., Gunnoo, J., Marques Passos, T., Stout, J.C., White, B. (2019). Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chemistry, 272, 66–75. https://doi.org/10.1016/j.foodchem.2018.08.035
  59. Koulis, G.A., Tsagkaris, A.S., Aalizadeh, R., Dasenaki, M.E., Panagopoulou, E.I., Drivelos, S., … Thomaidis, N.S. (2021). Honey phenolic compound profiling and authenticity assessment using hrms targeted and untargeted metabolomics. Molecules, 26(9), 1–21. https://doi.org/10.3390/molecules26092769
  60. Lagerstrom, R., Holt, K., Arzhaeva, Y., Bischof, L., Haberle, S., Hopf, F., Lovell, D. (2015). Pollen Image Classification Using the Classifynder System: Algorithm Comparison and a Case Study on New Zealand Honey. Advances in Experimental Medicine and Biology, 823, 207–226. https://doi.org/10.1007/978-3-319-10984-8_12
  61. Laha, R.C., De Mandal, S., Ralte, L., Ralte, L., Kumar, N.S., Gurusubramanian, G., … Kuravadi, N.A. (2017). Meta-barcoding in combination with palynological inference is a potent diagnostic marker for honey floral composition. AMB Express, 7(1), 132. https://doi.org/10.1186/s13568-017-0429-7
  62. Lanjwani, M.F., & Channa, F.A. (2019). Minerals content in different types of local and branded honey in Sindh, Pakistan. Heliyon, 5(7). https://doi.org/10.1016/j.heliyon.2019.e02042
  63. Lastra-Mejías, M., Torreblanca-Zanca, A., Aroca-Santos, R., Cancilla, J.C., Izquierdo, J.G., Torrecilla, J. S. (2018). Characterization of an array of honeys of different types and botanical origins through fluorescence emission based on LEDs. Talanta, 185, 196–202. https://doi.org/10.1016/j.talanta.2018.03.060
  64. Laube, I., Hird, H., Brodmann, P., Ullmann, S., Schöne-Michling, M., Chisholm, J., Broll, H. (2010). Development of primer and probe sets for the detection of plant species in honey. Food Chemistry, 118(4), 979–986. https://doi.org/10.1016/j.foodchem.2008.09.063
  65. Leita, L., Muhlbachova, G., Cesco, S., Barbattini, R., Mondini, C. (1996). Investigation of the use of honey bees and honey bee products to assess heavy metals contamination. Environmental Monitoring and Assessment, 43(1), 1–9. https://doi.org/10.1007/BF00399566
  66. Lin, J., Shen, Z., Zhang, A., Chai, Y. (2018). Blockchain and IoT based Food Traceability for Smart Agriculture. December, 1–6. https://doi.org/10.1145/3265689.3265692
  67. Liu, S., Lang, D., Meng, G., Hu, J., Tang, M., Zhou, X. (2022). Tracing the origin of honey products based on metagenomics and machine learning. Food Chemistry, 371, 131066. https://doi.org/10.1016/j.foodchem.2021.131066
  68. Louppis, A.P., Karabagias, I.K., Kontakos, S., Kontominas, M.G., Papastephanou, C. (2017). Botanical discrimination of Greek unifloral honeys based on mineral content in combination with physicochemical parameter analysis, using a validated chemometric approach. Microchemical Journal, 135, 180–189. https://doi.org/10.1016/j.microc.2017.09.004
  69. Louveaux, J., Maurizio, A., Vorwohl, G. (1978). Methods of Melissopalynology. Bee World, 59(4), 139–157. https://doi.org/10.1080/0005772x.1978.11097714
  70. Magdas, D.A., Guyon, F., Puscas, R., Vigouroux, A., Gaillard, L., Dehelean, A., Feher, I., Cristea, G. (2021). Applications of emerging stable isotopes and elemental markers for geographical and varietal recognition of Romanian and French honeys. Food Chemistry; 334(1), 127599. https://doi.org/10.1016/j.foodchem.2020.127599
  71. Rizelio, V.M., Gonzaga, L.V., Borges, G.D.S.C., França Maltez, H., Costa, A.C.O., Fett, R. (2012). Fast determination of cations in honey by capillary electrophoresis: A possible method for geographic origin discrimination. Talanta, 99, 450–456. https://doi.org/10.1016/j.talanta.2012.06.009
  72. Mary Hall. (n.d.). Oracle Blockchain Verifies Real Honey. https://blogs.oracle.com/blockchain/post/oracle-blockchain-verifies-real-honey
  73. Mendes, E., Brojo Proença, E., Ferreira, I.M.P.L.V.O., Ferreira, M.A. (1998). Quality evaluation of Portuguese honey. Carbohydrate Polymers, 37(3), 219–223. https://doi.org/10.1016/S0144-8617(98)00063-0
  74. Minaei, S., Shafiee, S., Polder, G., Moghadam-Charkari, N., van Ruth, S., Barzegar, M., … Kuś, P.M. (2017). VIS/NIR imaging application for honey floral origin determination. Infrared Physics and Technology, 86, 218–225. https://doi.org/10.1016/j.infrared.2017.09.001
  75. Mititelu, M., Udeanu, D.I., Nedelescu, M., Neacsu, S.M., Nicoara, A.C., Oprea, E., Ghica, M. (2022). Quality Control of Different Types of Honey and Propolis Collected from Romanian Accredited Beekeepers and Consumer’s Risk Assessment. Crystals, 12(1), 1–18. https://doi.org/10.3390/cryst12010087
  76. Molan, P.C. (1998). The limitations of the methods of identifying the floral source of honeys. Bee World, 79(2), 59–68. https://doi.org/10.1080/0005772X.1998.11099381
  77. Noviyanto, A., & Abdulla, W.H. (2020). Honey botanical origin classification using hyperspectral imaging and machine learning. Journal of Food Engineering, 265, 109684. https://doi.org/10.1016/j.jfoodeng.2019.109684
  78. Oddo, L.P., Piazza, M.G., Sabatini, A.G., Accorti, M. (1995). Characterization of unifloral honeys. Apidologie, 26(6), 453–465. https://doi.org/10.1051/apido:19950602
  79. Oliveira, S.S., Alves, C.N., Boa Morte, E.S., de Freitas Santos Júnior, A., Araujo, R.G.O., Santos, D.C.M.B. (2019). Determination of essential and potentially toxic elements and their estimation of bioaccessibility in honeys. Microchemical Journal, 151, 104221. https://doi.org/10.1016/j.microc.2019.104221
  80. Oroian, M., Prisacaru, A., Hretcanu, E.C., Stroe, S.G., Leahu, A., Buculei, A. (2015). Heavy metals profile in honey as a potential indicator of botanical and geographical origin. International Journal of Food Properties, 19(8), 1825–1836. https://doi.org/10.1080/10942912.2015.1107578
  81. Patrignani, M., Bernardelli, C., Conforti, P.A., Malacalza, N.H., Yamul, D.K., Donati, E., Lupano, C.E. (2015). Geographical discrimination of honeys through antioxidant capacity, mineral content and colour. International Journal of Food Science and Technology, 50(12), 2598–2605. https://doi.org/10.1111/ijfs.12928
  82. Patti, G.J., Yanes, O., Siuzdak, G. (2012). Innovation: Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. https://doi.org/10.1038/nrm3314
  83. Perna, A., Intaglietta, I., Simonetti, A., Gambacorta, E. (2014). Metals in honeys from different areas of Southern Italy. Bulletin of Environmental Contamination and Toxicology, 92(3), 253–258. https://doi.org/10.1007/s00128-013-1177-2
  84. Perna, A.M., Grassi, G., Gambacorta, E., Simonetti, A. (2021). Minerals content in Basilicata region (southern Italy) honeys from areas with different anthropic impact. International Journal of Food Science and Technology, 56(9), 4465–4472. https://doi.org/10.1111/ijfs.15112
  85. Persano Oddo, L., & Bogdanov, S. (2004). Determination of honey botanical origin: problems and issues. Apidologie, 35(Suppl. 1), S2–S3. https://doi.org/10.1051/apido:2004044
  86. Persano Oddo, L., & Piro, R. (2004). Main European unifloral honeys: descriptive sheets. Apidologie, 35(Suppl. 1), S38–S81. https://doi.org/10.1051/api-do:2004049
  87. Rashed, M.N., & Soltan, M.E. (2004). Major and trace elements in different types of Egyptian mono-floral and non-floral bee honeys. Journal of Food Composition and Analysis, 17(6), 725–735. https://doi.org/10.1016/j.jfca.2003.10.004
  88. Reyes, N.J.F., Asesor, P.N., Albarracín, V.N., García, M.E., Espeche, M.L. (2019). Caracterización palinológica de la miel de un sector de la región chaqueña de la provincia de Tucumán (Argentina). Boletín de La Sociedad Argentina de Botánica, 54(3), 367–379. https://doi.org/10.31055/1851.2372.v54.n3.25360
  89. Rodríguez-Flores, M.S., Escuredo, O., Míguez, M., Seijo, M.C. (2019). Differentiation of oak honeydew and chestnut honeys from the same geographical origin using chemometric methods. Food Chemistry, 297, 124979. https://doi.org/10.1016/j.foodchem.2019.124979
  90. Rodriguez, I., Salud, S., Hortensia, G., Luis, U. J., Jodral, M. (2010). Characterisation of Sierra Morena citrus blossom honey (Citrus sp). International Journal of Food Science and Technology, 45(10), 2008–2015. https://doi.org/10.1111/j.1365-2621.2010.02359.x
  91. Rünzel, M.A.S., Hassler, E.E., Rogers, R.E.L., Formato, G., Cazier, J.A. (2021). Designing a Smart Honey Supply Chain for Sustainable Development. IEEE Consumer Electronics Magazine, 10(4), 69–78. https://doi.org/10.1109/MCE.2021.3059955
  92. Schellenberg, A., Chmielus, S., Schlicht, C., Camin, F., Perini, M., Bontempo, L., … Horacek, M. (2010). Multielement stable isotope ratios (H, C, N, S) of honey from different European regions. Food Chemistry, 121(3), 770–777. https://doi.org/10.1016/j.foodchem.2009.12.082
  93. Schiassi, M.C.E.V., de Souza, V.R., Lago, A.M.T., Carvalho, G.R., Curi, P.N., Guimarães, A.S., Queiroz, F. (2021). Quality of honeys from different botanical origins. Journal of Food Science and Technology, 58(11), 4167–4177. https://doi.org/10.1007/s13197-020-04884-7
  94. Schievano, E., Stocchero, M., Zuccato, V., Conti, I., Piana, L. (2019). NMR assessment of European acacia honey origin and composition of EU-blend based on geographical floral markers. Food Chemistry, 288, 96–101. https://doi.org/10.1016/j.foodchem.2019.02.062
  95. Sevillano, V., Holt, K., Aznarte, J.L. (2020). Precise automatic classification of 46 different pollen types with convolutional neural networks. PLoS ONE, 15(6), 1–15. https://doi.org/10.1371/journal.pone.0229751
  96. She, S., Chen, L., Song, H., Lin, G., Li, Y., Zhou, J., Liu, C. (2019). Discrimination of geographical origins of Chinese acacia honey using complex 13C/12C, oligosaccharides and polyphenols. Food Chemistry, 272(August 2018), 580–585. https://doi.org/10.1016/j.foodchem.2018.07.227
  97. Siddiqui, A. J., Musharraf, S.G., Choudhary, M.I., Rahman, A. ur. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687–698. https://doi.org/10.1016/j.foodchem.2016.09.001
  98. Soares, S., Amaral, J.S., Oliveira, M.B.P.P., Mafra, I. (2015). Improving DNA isolation from honey for the botanical origin identification. Food Control, 48, 130–136. https://doi.org/10.1016/j.foodcont.2014.02.035
  99. Soares, S., Amaral, J.S., Oliveira, M.B.P.P., Mafra, I. (2017). A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1072–1100. https://doi.org/10.1111/1541-4337.12278
  100. Sobolev, A.P., Circi, S., Capitani, D., Ingallina, C., Mannina, L. (2017). Molecular fingerprinting of food authenticity. Current Opinion in Food Science, 16, 59–66. https://doi.org/10.1016/j.cofs.2017.08.002
  101. Solayman, M., Islam, M.A., Paul, S., Ali, Y., Khalil, M.I., Alam, N., Gan, S.H. (2016). Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219–233. https://doi.org/10.1111/1541-4337.12182
  102. Soria, A. C., González, M., De Lorenzo, C., Martínez-Castro, I., Sanz, J. (2004). Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85(1), 121–130. https://doi.org/10.1016/j.foodchem.2003.06.012
  103. Souza-Kruliski, C.R. de, Ducatti, C., Venturini Filho, W.G., Orsi, R. de O., Silva, E.T. (2010). Estudo de adulteração em méis brasileiros através de razão isotópica do carbono. Ciência e Agrotecnologia, 34(2), 434–439. https://doi.org/10.1590/s1413-70542010000200023
  104. Squadrone, S., Brizio, P., Stella, C., Mantia, M., Pederiva, S., Brusa, F., ... Abete, M.C. (2020). Trace elements and rare earth elements in honeys from the Balkans, Kazakhstan, Italy, South America, and Tanzania. Environmental Science and Pollution Research, 27(11), 12646–12657. https://doi.org/10.1007/s11356-020-07792-7
  105. Srivastava, A., & Dashora, K. (2022). Application of blockchain technology for agrifood supply chain management: a systematic literature review on benefits and challenges. Benchmarking, January. https://doi.org/10.1108/BIJ-08-2021-0495
  106. Stefas, D., Gyftokostas, N., Kourelias, P., Nanou, E., Kokkinos, V., Bouras, C., Couris, S. (2021). A laser-based method for the detection of honey adulteration. Applied Sciences (Switzerland), 11(14), 1–14. https://doi.org/10.3390/app11146435
  107. Suhandy, D., & Yulia, M. (2021). Using UV-Visible spectroscopy coupled with linear discrimination analysis to discriminate between monofloral and multifloral honey from Indonesia. AIP Conference Proceedings, 2342. https://doi.org/10.1063/5.0045325
  108. Tomczyk, M., Tarapatskyy, M., Dżugan, M. (2019). The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech Journal of Food Sciences, 37(4), 232–238. https://doi.org/10.17221/40/2019-CJFS
  109. Tosun, M. (2013). Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chemistry, 138(2–3), 1629–1632. https://doi.org/10.1016/j.food-chem.2012.11.068
  110. Trifković, J., Andrić, F., Ristivojević, P., Guzelmeric, E., Yesilada, E. (2017). Analytical methods in tracing honey authenticity. Journal of AOAC International, 100(4), 827–839. https://doi.org/10.5740/jaoacint.17-0142
  111. Uršulin-Trstenjak, N., Puntarić, D., Levanić, D., Gvozdić, V., Pavlek, Ž., Puntarić, A., … Vidosavljević, M. (2017). Pollen, Physicochemical, and Mineral Analysis of Croatian Acacia Honey Samples: Applicability for Identification of Botanical and Geographical Origin. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/8538693
  112. Utzeri, V. J., Ribani, A., Schiavo, G., Bertolini, F., Bovo, S., Fontanesi, L. (2018). Application of next generation semiconductor based sequencing to detect the botanical composition of monofloral, polyfloral and honeydew honey. Food Control, 86, 342–349. https://doi.org/10.1016/j.foodcont.2017.11.033
  113. Vanhanen, L. P., Emmertz, A., Savage, G.P. (2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1), 236–240. https://doi.org/10.1016/j.foodchem.2011.02.064
  114. Von Der Ohe, W., Persano Oddo, L., Piana, M.L., Morlot, M., Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35(Suppl. 1), S18–S25. https://doi.org/10.1051/apido:2004050
  115. Wang, H., Cao, X., Han, T., Pei, H., Ren, H., Stead, S. (2019). A novel methodology for real-time identification of the botanical origins and adulteration of honey by rapid evaporative ionization mass spectrometry. Food Control, 106, 106753. https://doi.org/10.1016/j.foodcont.2019.106753
  116. Wu, L., Du, B., Vander Heyden, Y., Chen, L., Zhao, L., Wang, M., Xue, X. (2017). Recent advancements in detecting sugar-based adulterants in honey-A challenge. TrAC - Trends in Analytical Chemistry, 86, 25–38. https://doi.org/10.1016/j.trac.2016.10.013
  117. Zheng, X., Zhao, Y., Wu, H., Dong, J., Feng, J. (2016). Origin Identification and Quantitative Analysis of Honeys by Nuclear Magnetic Resonance and Chemometric Techniques. Food Analytical Methods, 9(6), 1470–1479. https://doi.org/10.1007/s12161-015-0325-1
  118. Zhou, X., Taylor, M. P., Salouros, H., Prasad, S. (2018). Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-32764-w
DOI: https://doi.org/10.2478/jas-2022-0012 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 101 - 119
Submitted on: Apr 4, 2022
Accepted on: Nov 23, 2022
Published on: Dec 27, 2022
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Pier Paolo Danieli, Filippo Lazzari, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution 4.0 License.