Have a personal or library account? Click to login
Genetic Relationships Between Commercially Produced and Natural Populations of Bombus Terrestris Dalmatinus in Terms of Mitochondrial COI and CytB Cover

Genetic Relationships Between Commercially Produced and Natural Populations of Bombus Terrestris Dalmatinus in Terms of Mitochondrial COI and CytB

Open Access
|Dec 2021

References

  1. Aizen, M. A., Smith-Ramirez, C., Morales, C.L., Vieli, L., Saez, A., Barahona-Segovia, R.M., … Harder, L. (2018). Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology, 56(1), 100–106.
  2. Bandelt, H. J., Forster, P., Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48. DOI: 10.1093/oxfordjournals.molbev.a026036
  3. Barkan, N. P., & Aytekin, A. M. (2013). Systematical studies on the species of the subgenus Bombus (Thoracobombus) (Hymenoptera: Apidae, Bombus Latreille) in Turkey. Zootaxa, 3737(2), 167–183. DOI: 10.11646/zootaxa.3737.2.5
  4. Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. DOI: 10.1093/bioinformatics/btm308
  5. Cejas, D., Lopez-Lopez, A., Munoz, I., Ornosa, C., De la Rua, P. (2020). Unveiling introgression in bumblebee (Bombus terrestris) populations through mitogenome-based markers. Animal Genetics, 51(1), 70–77. DOI: 10.1111/age.12874
  6. Cejas, D., Ornosa, C., Munoz, I., De la Rua, P. (2018). Searching for Molecular Markers to Differentiate Bombus terrestris (Linnaeus) Subspecies in the Iberian Peninsula. Sociobiology, 65(4), 558–565. DOI: 10.13102/sociobiology.v65i4.3442
  7. Chandler, D., Cooper, E., Prince, G. (2019). Are there risks to wild European bumblebees from using commercial stocks of domesticated Bombus terrestris for crop pollination? Journal of Apicultural Research, 58(5), 665–681. DOI: 10.1080/00218839.2019.1637238
  8. Cilavdaroglu, E., & Gurel, F. (2020). Effectofrequeening on colony development in the bumblebee, Bombus terrestris. Journal of Apicultural Research, 59(4), 564–568. DOI: 10.1080/00218839.2020.1715568
  9. Dafni, A. (1998). The threat of Bombus terrestris spread. Bee World, 79(3), 113–114. DOI: 10.1080/0005772x.1998.11099392
  10. Doyle, J. J., & Doyle, J. L. (1990). Isolation ofplant DNA from fresh tissue. Focus, 12(13), 39–40.
  11. Estoup, A., Solignac, M., Cornuet, J. M., Goudet, J., Scholl, A. (1996). Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Molecular Ecology, 5(1), 19–31. DOI: 10.1111/j.1365-294x.1996.tb00288.x
  12. Excoffier, L., Laval, G., Schneider, S. (2007). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online, 1, 47–50. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19325852https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658868/pdf/ebo-01-47.pdf
  13. Francoso, E., Zuntini, A. R., Carnaval, A. C., Arias, M. C. (2016). Comparative phylogeography in the Atlantic forest and Brazilian savannas: pleistocene fluctuations and dispersal shape spatial patterns in two bumblebees. Bmc Evolutionary Biology, 16. DOI: ARTN 26710.1186/s12862-016-0803-0
  14. Goka, K., Okabe, K., Yoneda, M., Niwa, S. (2001). Bumblebee commercialization will cause worldwide migration of parasitic mites. Molecular Ecology, 10(8), 2095–2099. DOI: 10.1046/j.0962-1083.2001.01323.x
  15. Goulson, D. (2003). Effects of introduced bees on native ecosystems. Annual Review of Ecology Evolution and Systematics, 34, 1–26. DOI: 10.1146/annurev.ecolsys.34.011802.132355
  16. Goulson, D. (2010). Impacts of non-native bumblebees in Western Europe and North America. Applied Entomology and Zoology, 45(1), 7–12. DOI: 10.1303/aez.2010.7
  17. Goulson, D., & Hanley, M. E. (2004). Distribution and forage use of exotic bumblebees in South Island, New Zealand. New Zealand Journal of Ecology, 28(2), 225–232. Retrieved from <Go to ISI>://WOS:000226147100006
  18. Goulson, D., & Hughes, W. O. H. (2015). Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biological Conservation, 191, 10–19. DOI: 10.1016/j.biocon.2015.06.023
  19. Goulson, D., Lye, G. C., Darvill, B. (2008). Decline and conservation of bumblebees. Annual Review of Entomology, 53, 191–208. DOI: 10.1146/annurev.ento.53.103106.093454
  20. Gösterit, A. (2017). Colony traits of native Bombus terrestris dalmatinus from the Western Black Sea region of Turkey: comparison with commercial colonies. Mediterranean Agricultural Sciences, 30(2), 169–172.
  21. Gürel, F., Talay, R., Efendi, Y., Balcıoğlu, M.S. (1999). Effectiveness and quality of bombus bee pollen (Bombus terrestris) pollination in undergrowing tomato cultivation. Paper presented at the GAP I. Agriculture Congress., Şanlıurfa - Turkey.
  22. Han, T., Kim, S. H., Yoon, H. J., Park, I. G., Park, H. (2019). Genetic variations of DNA barcoding region of bumblebees (Hymenoptera: Apidae) from South Korea. Mitochondrial DNA Part A, 30(1), 30–42. DOI: 10.1080/24701394.2018.1450396
  23. Hingston, A. B. (2006). Is the exotic bumblebee Bombus terrestris really invading Tasmanian native vegetation? Journal of Insect Conservation, 10(3), 289–293. DOI: 10.1007/s10841-006-6711-7
  24. Hingston, A. B., Marsden-Smedley, J., Driscoll, D. A., Corbett, S., Fenton, J., Anderson, R., … Desmarchelier, J. M. (2002). Extent of invasion of Tasmanian native vegetation by the exotic bumblebee Bombus terrestris (Apoidea : Apidae). Austral Ecology, 27(2), 162–172. DOI: 10.1046/j.1442-9993.2002.01179.x
  25. Ings, T. C., Ings, N. L., Chittka, L., Rasmont, P. (2010). A failed invasion? Commercially introduced pollinators in Southern France. Apidologie, 41(1), 1–13. DOI: 10.1051/apido/2009044
  26. Ings, T. C., Ward, N. L., Chittka, L. (2006). Can commercially imported bumble bees out-compete their native conspecifics? Journal of Applied Ecology, 43(5), 940–948. DOI: 10.1111/j.1365-2664.2006.01199.x
  27. Inoue, M. N., & Yokoyama, J. (2010). Competition for flower resources and nest sites between Bombus terrestris (L.) and Japanese native bumblebees. Applied Entomology and Zoology, 45(1), 29–35. DOI: 10.1303/aez.2010.29
  28. Inoue, M. N., Yokoyama, J., Washitani, I. (2008). Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera : Apidae). Journal of Insect Conservation, 12(2), 135–146. DOI: 10.1007/s10841-007-9071-z
  29. Kanbe, Y., Okada, I., Yoneda, M., Goka, K., Tsuchida, K. (2008). Interspecific mating of the introduced bumblebee Bombus terrestris and the native Japanese bumblebee Bombus hypocrita sapporoensis results in inviable hybrids. Naturwissenschaften, 95(10), 1003–1008. DOI: 10.1007/s00114-008-0415-7
  30. Koulianos, S., & Schmid-Hempel, P. (2000). Phylogenetic relationships among bumblebees (Bombus, latreille) inferred from mitochondrial cytochrome b and cytochrome oxidase I sequences. Molecular Phylogenetics and Evolution, 14(3), 335–341. DOI 10.1006/mpev.1999.0621
  31. Kraus, F. B., Szentgyorgyi, H., Rozej, E., Rhode, M., Moron, D., Woyciechowski, M., Moritz, R. F. A. (2011). Greenhouse bumblebees (Bombus terrestris) spread their genes into the wild. Conservation Genetics, 12(1), 187–192. DOI: 10.1007/s10592-010-0131-7
  32. Lecocq, T., Coppee, A., Michez, D., Brasero, N., Rasplus, J. Y., Valterova, I., Rasmont, P. (2016). The alien's identity: consequences of taxonomic status for the international bumblebee trade regulations. Biological Conservation, 195, 169–176. DOI: 10.1016/j.biocon.2016.01.004
  33. Lecocq, T., Vereecken, N. J., Michez, D., Dellicour, S., Lhomme, P., Valterova, I., . . . Rasmont, P. (2013). Patterns of Genetic and Reproductive Traits Differentiation in Mainland vs. Corsican Populations of Bumblebees. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0065642
  34. Meydan, H., Argun Karslı, B., Gürel, F., Balcıoglu, M.S., Yildiz, M.A. (2016). Determination of Genetic Variation in Some Native and Commercial B. terrestris Populations in Turkey by Microsatellite Markers. Journal of Lalahan Livestock Research Institute, 56(2), 48–55.
  35. Michener, C. D. (2000). The Bees of the World: The Johns Hopkins University Press.
  36. Morath, S. U. (2007). Assessing genetic variation among Bombus Impatiens (Hymenoptera: Apidae) in two boroughs of New York City using mitochondrial DNA. 441 E Fordham Road. Bronx, NY 10458.
  37. Moreira, A. S., Horgan, F. G., Murray, T. E., Kakouli-Duarte, T. (2015). Population genetic structure of Bombus terrestris in Europe: Isolation and genetic differentiation of Irish and British populations. Molecular Ecology, 24(13), 3257–3268. DOI: 10.1111/mec.13235
  38. Murray, T. E., Fitzpatrick, U., Brown, M. J. F., Paxton, R. J. (2008). Cryptic species diversity in a widespread bumblebee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics, 9(3), 653–666. DOI: 10.1007/s10592-007-9394-z
  39. Ono, M. (1998). Why now bumblebee (in Japanese). The Nature and Insects 33(6), 2–3.
  40. Özbek, H. (1997). Bumble bee fauna of Turkey with distribution maps (Hymenoptera: Apidae, Bombinae) Part 1: Alpigeno bombus Skorikov, Bombias Robertson, and Bombus Latreille. Turkish Journal of Entomology, 21(1), 37–56.
  41. Pedersen, B. V. (1996). A phylogenetic analysis of cuckoo bumblebees (Psithyrus, Lepeletier) and bumblebees (Bombus, Latreille) inferred from sequences of the mitochondrial gene cytochrome oxidase. Molecular Phylogenetics and Evolution, 5(2), 289–297. DOI: 10.1006/mpev.1996.0024
  42. Pirounakis, K., Koulianos, S., Hempel, P.S. (1998). Genetic variation among European populations of Bombus pascuorum (Hymenoptera: Apidae) from mitochondrial DNA sequence data. European Journal of Entomology, 95, 27–33.
  43. Pizzirani, C., Viola, P., Gabbianelli, F., Fagotti, A., Simoncelli, F., Di Rosa, I., … Lucentini, L. (2020). First evidence of heteroplasmy in Grey Partridge (Perdix perdix). Avian Research, 11(1). DOI: ARTN 2710.1186/s40657-020-00213-w
  44. Rhymer, J. M., & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27, 83–109. DOI: 10.1146/annurev.ecolsys.27.1.83
  45. Ricardo, P. C., Francoso, E., Arias, M. C. (2020). Mitochondrial DNA intra-individual variation in a bumblebee species: A challenge for evolutionary studies and molecular identification. Mitochondrion, 53, 243–254. DOI: 10.1016/j.mito.2020.06.007
  46. Rozas, J., Librado, P., Sanchez-Delbarrio, J.C., Messeguer, X., Rozas, R. (2010). Current Released Version: 5.10.1.
  47. Rubinoff, D., & Holland, B. S. (2005). Between two extremes: Mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology, 54(6), 952–961. DOI: 10.1080/10635150500234674
  48. Saitou, N., & Nei, M. (1987). The Neighbor-Joining Method - a New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4(4), 406–425. DOI: 10.1093/oxfordjournals.molbev.a040454
  49. Seabra, S. G., Silva, S. E., Nunes, V. L., Sousa, V. C., Martins, J., Marabuto, E., … Paulo, O. S. (2019). Genomic signatures of introgression between commercial and native bumblebees, Bombus terrestris, in western Iberian Peninsula-Implications for conservation and trade regulation. Evolutionary Applications, 12(4), 679–691. DOI: 10.1111/eva.12732
  50. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. DOI: 10.1093/molbev/mst197
  51. Tikochinski, Y., Carreras, C., Tikochinski, G., Vilaca, S. T. (2020). Population-specific signatures of intra-individual mitochondrial DNA heteroplasmy and their potential evolutionary advantages (vol 81, 514, 2020). Scientific Reports, 10(1). DOI: ARTN 1318010.1038/s41598-020-69872-5
  52. Tokoro, S., Yoneda, M., Kunitake, Y.K., Goka, K. (2010). Special Feature for Ecological Risk Assessment of Introduced Bumblebees Geographic variation in mitochondrial DNA of Bombus ignites (Hymenoptera: Apidae). Applied Entomology and Zoology, 45(1) 77–87.
  53. Trillo, A., Montero-Castano, A., Gonzalez-Varo, J. P., Gonzalez-Moreno, P., Ortiz-Sanchez, F. J., Vila, M. (2019). Contrasting occurrence patterns of managed and native bumblebees in natural habitats across a greenhouse landscape gradient. Agriculture Ecosystems & Environment, 272, 230–236. DOI: 10.1016/j.agee.2018.11.018
  54. Tsuchida, K., Yamaguchi, A., Kanbe, Y., Goka, K. (2019). Reproductive Interference in an Introduced Bumblebee: Polyandry may Mitigate Negative Reproductive Impact. Insects, 10(2). DOI: ARTN 5910.3390/insects10020059
  55. Velthuis, H. H. W., & van Doorn, A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37(4), 421–451. DOI: 10.1051/apido:2006019
  56. Wernick, R. I., Estes, S., Howe, D. K., Denver, D. R. (2016). Paths of Heritable Mitochondrial DNA Mutation and Heteroplasmy in Reference and gas-1 Strains of Caenorhabditis elegans. Frontiers in Genetics, 7. DOI: ARTN 5110.3389/fgene.2016.00051
  57. Whitehorn, P. R., Tinsley, M. C., Brown, M. J. F., Goulson, D. (2013). Investigating the impact of deploying commercial Bombus terrestris for crop pollination on pathogen dynamics in wild bumble bees. Journal of Apicultural Research, 52(3), 149–157. DOI: 10.3896/Ibra.1.52.3.06
  58. Widmer, A., & Schmid-Hempel, P. (1999). The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Molecular Ecology, 8(3), 387–398. DOI: 10.1046/j.1365-294X.1999.00584.x
  59. Widmer, A., Schmid-Hempel, P., Estoup, A., Scholl, A. (1998). Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity, 81, 563–572. DOI: 10.1038/sj.hdy.6884070
  60. Williams, P. H., Berezin, M. V., Cannings, S. G., Cederberg, B., Odegaard, F., Rasmussen, C., … Byvaltsev, A. M. (2019). The arctic and alpine bumblebees of the subgenus Alpinobombus revised from integrative assessment of species’ gene coalescents and morphology (Hymenoptera, Apidae, Bombus). Zootaxa, 4625(1), 1–68. DOI: 10.11646/zootaxa.4625.1.1
  61. Williams, P. H., Brown, M. J. F., Carolan, J. C., An, J. D., Goulson, D., Aytekin, A. M., … Xie, Z. H. (2012). Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Systematics and Biodiversity, 10(1), 21–56. DOI: 10.1080/14772000.2012.664574
  62. Williams, P. H., & Osborne, J. L. (2009). Bumblebee vulnerability and conservation world-wide. Apidologie, 40(3), 367–387. DOI: 10.1051/apido/2009025
  63. Yoon, H. J., Kim, S.E., Lee, M.L., Kim, I., Bae, J.S., Sohn, H.D., Jin, B.R. (2003). Genetic homogeneity of the Korean native bumble bee, Bombus ardens (Hymenoptera: Apidae), detected by mitochondrial COI gene sequences. International Journal of Industrial Entomology, 6(1), 63–68.
DOI: https://doi.org/10.2478/jas-2021-0025 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 315 - 330
Submitted on: Mar 25, 2021
Accepted on: Oct 5, 2021
Published on: Dec 28, 2021
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Kemal Karabağ, Emel Tüten Sevim, Şadiye Taşbaş, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution 4.0 License.