References
- Ahima, R. S. (2016). Principles of energy homeostasis. In: Ahima, R. S. (Eds.), Metabolic Syndrome: A Comprehensive Textbook (pp. 311–326). Springer International Publishing, Cham.
- Ahn, K., Xie, X., Riddle, J., Pettis, J., Huang, Z. Y. (2012). Effects of long distance transportation on honey bee physiology. Psyche, 2012. https://doi.org/10.1155/2012/193029
- Aizen, M. A., & Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology, 19(11), 915–918. https://doi.org/10.1016/j.cub.2009.03.071
- Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., … Le Conte, Y. (2010a). Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12(3), 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x
- Alaux, C., Crauser, D., Pioz, M., Saulnier, C., Le Conte, Y. (2014). Parasitic and immune modulation of flight activity in honey bees tracked with optical counters. Journal of Experimental Biology, 217(19), 3416–3424. https://doi.org/10.1242/jeb.105783
- Alaux, C., Dantec, C., Parrinello, H., Le Conte, Y. (2011). Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics, 12, 496. https://doi.org/10.1186/1471-2164-12-496
- Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010b). Diet effects on honeybee immunocompetence. Biology Letters, 6(4), 562–565. https://doi.org/10.1098/rsbl.2009.0986
- Albrecht, H. (2005). Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming. Weed Research, 45(5), 339–350. https://doi.org/10.1111/j.1365-3180.2005.00472.x
- Aldea, P., & Bozinovic, F. (2020). The energetic and survival costs of Varroa parasitism in honeybees. Apidologie, 51, 997–1005. https://doi.org/10.1007/s13592-020-00777-y
- Allen, M., & Ball, B. (1996). The incidence and world distribution of honey bee viruses. Bee World, 77(3), 141–162. https://doi.org/10.1080/0005772X.1996.11099306
- Amdam, G. V., & Omholt, S. W. (2003). The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. Journal of Theoretical Biology, 223(4), 451–464. https://doi.org/10.1016/S0022-5193(03)00121-8
- Antúnez, K., Harriet, J., Gende, L., Maggi, M., Eguaras, M., Zunino, P. (2008). Efficacy of natural propolis extract in the control of American Foulbrood. Veterinary Microbiology, 131(3–4), 324–331. https://doi.org/10.1016/j.vetmic.2008.04.011
- Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 11(9), 2284–2290. https://doi.org/10.1111/j.1462-2920.2009.01953.x
- Aufauvre, J., Misme-Aucouturier, B., Viguès, B., Texier, C., Delbac, F., Blot, N. (2014). Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One, 9(3), e91686. https://doi.org/10.1371/journal.pone.0091686
- Baena-González, E. (2010). Energy signalling in the regulation of gene expression during stress. Molecular Plant, 3(2), 300–313. https://doi.org/10.1093/mp/ssp113
- Balieira, K. V. B., Mazzo, M., Bizerra, P. F. V., Guimarães, A. R. D. J. S., Nicodemo, D., Mingatto, F. E. (2018). Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. Apidologie, 49(5), 562–572. https://doi.org/10.1007/s13592-018-0583-1
- Ball, B. V., & Allen, M. F. (1988). The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Annals of Applied Biology, 113(2), 237–244. https://doi.org/10.1111/j.1744-7348.1988.tb03300.x
- Bascompte, J., Jordano, P., Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312(5772), 431–433. https://doi.org/10.1126/science.1123412
- Belzunces, L. P., Tchamitchian, S., Brunet, J. L. (2012). Neural effects of insecticides in the honey bee. Apidologie, 43(3), 348–370. https://doi.org/10.1007/s13592-012-0134-0
- Bhatnagar, P., Lata, P., Singh, F., Singh, S. (2020). Hive Products and Their Uses. Biotica Research Today, 2(8), 808–811.
- Boman, H. G., & Hultmark, D. (1987). Cell-free immunity in insects. Annual Reviews of Microbiology, 41, 103–126. https://doi.org/10.1146/annurev.mi.41.100187.000535
- Boncristiani, H., Underwood, R., Schwarz, R., Evans, J. D., Pettis, J. (2012). Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. Journal of Insect Physiology, 58(5), 613–620. https://doi.org/10.1016/j.jinsphys.2011.12.011
- Bordier, C., Dechatre, H., Suchail, S., Peruzzi, M., Soubeyrand, S., Pioz, M., … Alaux, C. (2017). Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera). Scientific Reports, 7(2760). https://doi.org/10.1038/s41598-017-03944-x
- Brandt, A., Gorenflo, A., Siede, R., Meixner, M., Büchler, R. (2016). The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of Insect Physiology, 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001
- Brandt, A., Grikscheit, K., Siede, R., Grosse, R., Meixner, M. D., Büchler, R. (2017). Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Scientific Reports, 7(4673). https://doi.org/10.1038/s41598-017-04734-1
- Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3), 278–294. https://doi.org/10.1051/apido/2010012
- Brutscher, L. M., Daughenbaugh, K. F., Flenniken, M. L. (2015). Antiviral defense mechanisms in honey bees. Current Opinion in Insect Science, 10, 71–82. https://doi.org/10.1016/j.cois.2015.04.016
- Campbell, J., Kessler, B., Mayack, C., Naug, D. (2010). Behavioural fever in infected honeybees: parasitic manipulation or coincidental benefit? Parasitology, 137(10), 1487–1491. https://doi.org/10.1017/S0031182010000235
- Cerenius, L., Lee, B. L., Söderhäll, K. (2008). The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology, 29(6), 263–271. https://doi.org/10.1016/j.it.2008.02.009
- Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J. D., Pettis, J. S. (2012). Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 58(8), 1090–1095. https://doi.org/10.1016/j.jinsphys.2012.04.016
- Chakrabarti, P., Carlson, E. A., Lucas, H. M., Melathopoulos, A. P., Sagili, R. R. (2020). Field rates of Sivanto™ (flupyradifurone) and Transform® (sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). PLoS One, 15(5), e0233033. https://doi.org/10.1371/journal.pone.0233033
- Chakrabarti, P., Rana, S., Sarkar, S., Smith, B., Basu, P. (2015). Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie, 46(1), 107–129. https://doi.org/10.1007/s13592-014-0308-z
- Cheeseman, K. H. (1993). Mechanisms and effects of lipid peroxidation. Molecular Aspects of Medicine, 14(3), 191–197. https://doi.org/10.1016/0098-2997(93)90005-X
- Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R., Feyereisen, R., Oakeshott, J. G. (2006). A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 15(5), 615–636. https://doi.org/10.1111/j.1365-2583.2006.00672.x
- Clissold, F. J., Coggan, N., Simpson, S. J. (2013). Insect herbivores can choose microclimates to achieve nutritional homeostasis. Journal of Experimental Biology, 216(11), 2089–2096. https://doi.org/10.1242/jeb.078782
- Corona, M., Branchiccela, B., Madella, S., Chen, Y., Evans, J. (2019). Decoupling the effects of nutrition, age and behavioral caste on honey bee physiology and immunity. BioRxiv, 667931. https://doi.org/10.1101/667931
- Cousin, M., Silva-Zacarin, E., Kretzschmar, A., El Maataoui, M., Brunet, J. L., Belzunces, L. P. (2013). Size changes in honey bee larvae oenocytes induced by exposure to paraquat at very low concentrations. PLoS One, 8(5), e65693. https://doi.org/10.1371/journal.pone.0065693
- Cremer, S., Armitage, S. A., Schmid-Hempel, P. (2007). Socialimmunity. CurrentBiology, 17(16), R693–R702. https://doi.org/10.1016/j.cub.2007.06.008
- Currie, R. W., Pernal, S. F., Guzmán-Novoa, E. (2010). Honey bee colony losses in Canada. Journal of Apicultural Research, 49(1), 104–106. https://doi.org/10.3896/IBRA.1.49.1.18
- Dai, P., Yan, Z., Ma, S., Yang, Y., Wang, Q., Hou, C., … Diao, Q. (2018). The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. Journal of Agricultural and Food Chemistry, 66(29), 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212
- Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L., Neumann, P. (2012a). Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Applied and Environmental Microbiology, 78(4), 981–987. https://doi.org/10.1128/AEM.06537-11
- Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L., Neumann, P. (2012b). Predictive markers of honey bee colony collapse. PLoS One, 7(2), e32151. https://doi.org/10.1371/journal.pone.0032151
- Danihlík, J., Aronstein, K., Petřivalský, M. (2015). Antimicrobial peptides: a key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. Journal of Apicultural Research, 54(2), 123–136. https://doi.org/10.1080/00218839.2015.1109919
- Danka, R. G., & Villa, J. D. (1998). Evidence of autogrooming as a mechanism of honey bee resistance to tracheal mite infestation. Journal of Apicultural Research, 37(1), 39–46. https://doi.org/10.1080/00218839.1998.11100953
- Davies, M. J. (2016). Protein oxidation and peroxidation. Biochemical Journal, 473(7), 805–825. https://doi.org/10.1042/BJ20151227
- DeGrandi-Hoffman, G., & Chen, Y. (2015). Nutrition, immunity and viral infections in honey bees. Current Opinion in Insect Science, 10, 170–176. https://doi.org/10.1016/j.cois.2015.05.007
- Di Prisco, G., Annoscia, D., Margiotta, M., Ferrara, R., Varricchio, P., Zanni, V., … Pennacchio, F. (2016). A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences, 113(12), 3203–3208. https://doi.org/10.1073/pnas.1523515113
- Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F. (2013). Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences, 110(46), 18466–18471. https://doi.org/10.1073/pnas.1314923110
- Dickel, F., Münch, D., Amdam, G. V., Mappes, J., Freitak, D. (2018). Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One, 13(1), e0191256. https://doi.org/10.1371/journal.pone.0191256
- Eischen, F. A. (1987). Overwintering performance of honey bee colonies heavily infested with Acarapis woodi (Rennie). Apidologie, 18(4), 293–304. https://doi.org/10.1051/apido:19870401
- Esch, H. (1988). The effects of temperature on flight muscle potentials in honeybees and cuculiinid winter moths. Journal of Experimental Biology, 135, 109–117.
- Evans, J. D., & Pettis, J. S. (2005). Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution, 59(10), 2270–2274. https://doi.org/10.1111/j.0014-3820.2005.tb00935.x
- Evans, J. D., & Spivak, M. (2010). Socialized medicine: individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103, S62–S72. https://doi.org/10.1016/j.jip.2009.06.019
- Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., … Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 15(5), 645–656. https://doi.org/10.1111/j.1365-2583.2006.00682.x
- Farooqui, T. (2008). Iron-induced oxidative stress modulates olfactory learning and memory in honeybees. Behavioral Neuroscience, 122(2), 433–447. https://doi.org/10.1037/0735-7044.122.2.433
- Fievet, J., Tentcheva, D., Gauthier, L., De Miranda, J., Cousserans, F., Colin, M. E., Bergoin, M. (2006). Localization of deformed wing virus infection in queen and drone Apis mellifera L. Virology Journal, 3(16). https://doi.org/10.1186/1743-422X-3-16
- Flores, J. M., Ruiz, J. A., Ruz, J. M., Puerta, F., Bustos, M., Padilla, F., Campano, F. (1996). Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions. Apidologie, 27(4), 185–192. https://doi.org/10.1051/apido:19960401
- Fontaine, C., Dajoz, I., Meriguet, J., Loreau, M. (2005). Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biology, 4(1), e1. https://doi.org/10.1371/journal.pbio.0040001
- Forsgren, E., De Miranda, J. R., Isaksson, M., Wei, S., Fries, I. (2009). Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera). Experimental and Applied Acarology, 47(2), 87–97. https://doi.org/10.1007/s10493-008-9204-4
- Fries, I., Feng, F., da Silva, A., Slemenda, S. B., Pieniazek, N. J. (1996). Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 32(3), 356–365. https://doi.org/10.1016/S0932-4739(96)80059-9
- Garrido, P. M., Antúnez, K., Martín, M., Porrini, M. P., Zunino, P., Eguaras, M. J. (2013). Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides. Journal of Insect Physiology, 59(1), 113–119. https://doi.org/10.1016/j.jinsphys.2012.10.019
- Gauthier, L., Tentcheva, D., Tournaire, M., Dainat, B., Cousserans, F., Colin, M. E., Bergoin, M. (2007). Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique. Apidologie, 38(5), 426–435. https://doi.org/10.1051/apido:2007026
- Genersch, E., Von Der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Büchler, R., … Meixner, M. (2010). The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 41(3), 332–352. https://doi.org/10.1051/apido/2010014
- Gillespie, J. P., Kanost, M. R., Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611–643. https://doi.org/10.1146/annurev.ento.42.1.611
- Gilliam, M. (1997). Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiology Letters, 155(1), 1–10. https://doi.org/10.1111/j.1574-6968.1997.tb12678.x
- Gilliam, M., Taber III, S., Richardson, G. V. (1983). Hygienic behavior of honey bees in relation to chalkbrood disease. Apidologie, 14(1), 29–39.
- Gliński, Z., & Jarosz, J. (1992). Varroa jacobsoni as a carrier of bacterial infections to a recipient bee host. Apidologie, 23(1), 25–31. https://doi.org/10.1051/apido:19920103
- Gliński, Z., & Jarosz, J. (1995). Mechanical and biochemical defences of honey bees. Bee World, 76(3), 110–118. https://doi.org/10.1080/0005772X.1995.11099257
- Goulson, D., Nicholls, E., Botias, C., Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides and lack of flowers. Science, 347(6229). https://doi.org/10.1126/science.1255957
- Gregorc, A., & Bowen, I. D. (1998). Histopathological and histochemical changes in honeybee larvae (Apis mellifera L.) after infection with Bacillus larvae, the causative agent of American foulbrood disease. Cell Biology International, 22(2), 137–144. https://doi.org/10.1006/cbir.1998.0232
- Gregorc, A., Evans, J. D., Scharf, M., Ellis, J. D. (2012). Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). Journal of Insect Physiology, 58(8),1042–1049. https://doi.org/10.1016/j.jinsphys.2012.03.015
- Gross, M. (2007). Bee puzzles. Current Biology, 17(11), R389. https://doi.org/10.1016/j.cub.2007.05.027
- Guzman-Novoa, E., Emsen, B., Unger, P., Espinosa-Montaño, L. G., Petukhova, T. (2012). Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.). Journal of Invertebrate Pathology, 110(3), 314–320. https://doi.org/10.1016/j.jip.2012.03.020
- Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., … Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079), 348–350. https://doi.org/10.1126/science.1215039
- HGSC (The Honeybee Genome Sequencing Consortium) (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443(7114), 931–949. https://doi.org/10.1038/nature05260
- Higes, M., García-Palencia, P., Martín-Hernández, R., Meana, A. (2007). Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 94(3), 211–217. https://doi.org/10.1016/j.jip.2006.11.001
- Huang, Z. (2012). Pollen nutrition affects honey bee stress resistance. Terrestrial Arthropod Reviews, 5(2), 175–189. https://doi.org/10.1163/187498312X639568
- Ibrahim, A., Reuter, G. S., Spivak, M. (2007). Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor. Apidologie, 38(1), 67–76. https://doi.org/10.1051/apido:2006065
- James, R. R., & Xu, J. (2012). Mechanisms by which pesticides affect insect immunity. Journal of Invertebrate Pathology, 109(2), 175–182. https://doi.org/10.1016/j.jip.2011.12.005
- Janashia, I., & Alaux, C. (2016). Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae). Journal of Economic Entomology, 109(3), 1474–1477. https://doi.org/10.1093/jee/tow065
- Jena, N. R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. Journal of Biosciences, 37(3), 503–517. https://doi.org/10.1007/s12038-012-9218-2
- Jivan, A. (2013). The impact of pesticides on honey bees and hence on humans. Scientific Papers Animal Science and Biotechnologies, 46(2), 272–277.
- Johnson, R. M., Dahlgren, L., Siegfried, B. D., Ellis, M. D. (2013). Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One, 8(1), e54092. https://doi.org/10.1371/journal.pone.0054092
- Jones, J. C. (1962). Current concepts concerning insect hemocytes. American Zoologist, 2(2), 209–246.
- Kaaya, G. P. (1993). Inducible humoral antibacterial immunity in insects. In: Pathak, J. P. N. (Eds.), Insect Immunity (pp. 69–89). Springer, Dordrecht.
- Khongphinitbunjong, K., de Guzman, L. I., Tarver, M. R., Rinderer, T. E., Chantawannakul, P. (2015). Interactions of Tropilaelaps mercedesae, honey bee viruses and immune response in Apis mellifera. Journal of Apicultural Research, 54(1), 40–47. https://doi.org/10.1080/00218839.2015.1041311
- Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
- Kronenberg, F., & Heller, H. C. (1982). Colonial thermoregulation in honey bees (Apis mellifera). Journal of Comparative Physiology A, 148(1), 65–76. https://doi.org/10.1007/BF00688889
- Kurze, C., Le Conte, Y., Dussaubat, C., Erler, S., Kryger, P., Lewkowski, O., … Moritz, R. F. (2015). Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS One, 10(10), e0140174. https://doi.org/10.1371/journal.pone.0140174
- Larsen, A., Reynaldi, F. J., Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Revista Mexicana de Ciencias Pecuarias, 10(3), 705–728.
- Laughton, A. M., Boots, M., Siva-Jothy, M. T. (2011). The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge. Journal of Insect Physiology, 57(7), 1023–1032. https://doi.org/10.1016/j.jinsphys.2011.04.020
- Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27(2), 499–510.
- Li, G., Zhao, H., Liu, Z., Wang, H., Xu, B., Guo, X. (2018). The wisdom of honeybee defenses against environmental stresses. Frontiers in Microbiology, 9, 722. https://doi.org/10.3389/fmicb.2018.00722
- Li, G., Zhao, H., Wang, H., Guo, X., Guo, X., Sun, Q., Xu, B. (2016). Characterization of a decapentapletic gene (AccDpp) from Apis cerana cerana and its possible involvement in development and response to oxidative stress. PLoS One, 11(2), e0149117. https://doi.org/10.1371/journal.pone.0149117
- Li, J., Heerman, M. C., Evans, J. D., Rose, R., Li, W., Rodríguez-García, C., … Hamilton, M. (2019). Pollen reverses decreased lifespan, altered nutritional metabolism and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics. Journal of Experimental Biology, 222(7), 1–9. https://doi.org/10.1242/jeb.202077
- Liu, T. P. (1984). Ultrastructure of the midgut of the worker honey bee Apis mellifera heavily infected with Nosema apis. Journal of Invertebrate Pathology, 44(3), 282–291. https://doi.org/10.1016/0022-2011(84)90026-0
- Liu, T. P. (1996). Varroa mites as carriers of honey-bee chalkbrood. American Bee Journal (USA). 136(9).
- Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee Jr, R. E., Denlinger, D. L. (2008). High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology, 38(8), 796–804. https://doi.org/10.1016/j.ibmb.2008.05.006
- Mallon, E. B., Brockmann, A., Schmid-Hempel, P. (2003). Immune response inhibits associative learning in insects. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1532), 2471–2473. https://doi.org/10.1098/rspb.2003.2456
- Mao, W., Schuler, M. A., Berenbaum, M. R. (2013). Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences, 110(22), 8842–8846. https://doi.org/10.1073/pnas.1303884110
- Martel, A. C., Zeggane, S., Aurières, C., Drajnudel, P., Faucon, J. P., Aubert, M. (2007). Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®50*. Apidologie, 38(6), 534–544. https://doi.org/10.1051/apido:2007038
- Martín-Hernández, R., Botías, C., Barrios, L., Martínez-Salvador, A., Meana, A., Mayack, C., Higes, M. (2011). Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitology Research, 109(3), 605–612. https://doi.org/10.1007/s00436-011-2292-9
- May, E., Wilson, J., Isaacs, R. (2015). Minimizing pesticide risk to bees in fruit crops. Extension Bulletin Michigan State University-E3245, 1–16.
- Mayack, C., & Naug, D. (2009). Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertebrate Pathology, 100(3), 185–188. https://doi.org/10.1016/j.jip.2008.12.001
- Mayack, C., & Naug, D. (2010). Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. Journal of Insect Physiology, 56(11), 1572–1575. https://doi.org/10.1016/j.jinsphys.2010.05.016
- McKinstry, M., Chung, C., Truong, H., Johnston, B. A., Snow, J. W. (2017). The heat shock response and humoral immune response are mutually antagonistic in honey bees. Scientific Reports, 7(8850). https://doi.org/10.1038/s41598-017-09159-4
- McMullan, J. B., & Brown, M. J. F. (2009). A qualitative model of mortality in honey bee (Apis mellifera) colonies infested with tracheal mites (Acarapis woodi). Experimental and Applied Acarology, 47, 225–234. https://doi.org/10.1007/s10493-008-9213-3
- Medrzycki, P., Sgolastra, F., Bortolotti, L., Bogo, G., Tosi, S., Padovani, E., Porrini, C., Sabatini, A. G. (2010). Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides. Journal of Apicultural Research, 49(1), 52–59. https://doi.org/10.3896/IBRA.1.49.1.07
- Meikle, W. G., Adamczyk, J. J., Weiss, M., Gregorc, A., Johnson, D. R., Stewart, S. D., … Lorenz, G. M. (2016). Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the US. PLoS One, 11(12), e0168603. https://doi.org/10.1371/journal.pone.0168603
- Melicher, D., Wilson, E. S., Bowsher, J. H., Peterson, S. S., Yocum, G. D., Rinehart, J. P. (2019). Long-distance transportation causes temperature stress in the honey bee, Apis mellifera (Hymenoptera: Apidae). Environmental Entomology, 48(3), 691–701. https://doi.org/10.1093/ee/nvz027
- Moret, Y., & Schmid-Hempel, P. (2000). Survival for immunity: The price of immune system activation for bumblebee workers. Science, 290(5494), 1166–1168. https://doi.org/10.1126/science.290.5494.1166
- Morimoto, T., Kojima, Y., Toki, T., Komeda, Y., Yoshiyama, M., Kimura, K., Nirasawa, K., Kadowaki, T. (2011). The habitat disruption induces immune-suppression and oxidative stress in honey bees. Ecology and Evolution, 1(2), 201–217. https://doi.org/10.1002/ece3.21
- Motta, E. V., Raymann, K., Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115
- Naug, D., & Camazine, S. (2002). The role of colony organization on pathogen transmission in social insects. Journal of Theoretical Biology, 215(4), 427–439. https://doi.org/10.1006/jtbi.2001.2524
- Nazzi, F., & Pennacchio, F. (2014). Disentangling multiple interactions in the hive ecosystem. Trends in Parasitology, 30(12), 556–561. https://doi.org/10.1016/j.pt.2014.09.006
- Nazzi, F., Brown, S. P., Annoscia, D., Del Piccolo, F., Di Prisco, G., Varricchio, P., … Pennacchio, F. (2012). Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathogens, 8(6), e1002735. https://doi.org/10.1371/journal.ppat.1002735
- Negri, P., Maggi, M. D., Ramirez, L., De Feudis, L., Szwarski, N., Quintana, S., Eguaras, M. J., Lamattina, L. (2015). Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie, 46(4), 542–557. https://doi.org/10.1007/s13592-014-0345-7
- Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. Jr., Amdam, G. V. (2007). The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biology, 5(3), e62. https://doi.org/10.1371/journal.pbio.0050062
- Ollerton, J., Winfree, R., Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x
- Pamminger, T., Botías, C., Goulson, D., Hughes, W. O. H. (2018). A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional Ecology, 32(8), 1921–1930. https://doi.org/10.1111/1365-2435.13119
- Perry, C. J., Søvik, E., Myerscough, M. R., Barron, A. B. (2015). Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proceedings of the National Academy of Sciences, 112(11), 3427–3432. https://doi.org/10.1073/pnas.1422089112
- Perveen, N., & Ahmad, M. (2017). Toxicity of some insecticides to the haemocytes of giant honeybee, Apis dorsata F. under laboratory conditions. Saudi Journal of Biological Sciences, 24(5), 1016–1022. https://doi.org/10.1016/j.sjbs.2016.12.011
- Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R., vanEngelsdorp, D. (2013). Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One, 8(7), e70182. https://doi.org/10.1371/journal.pone.0070182
- Pettis, J. S., vanEngelsdorp, D., Johnson, J., Dively, G. (2012). Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2), 153–158. https://doi.org/10.1007/s00114-011-0881-1
- Ponnappan, S., & Ponnappan, U. (2011). Aging and immune function: molecular mechanisms to interventions. Antioxidants & Redox Signaling, 14(8), 1551–1585. https://doi.org/10.1089/ars.2010.3228
- Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007
- Rabasa, C., & Dickson, S. L. (2016). Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 9, 71–77. https://doi.org/10.1016/j.cobeha.2016.01.011
- Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., … vanEngelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792–1801. https://doi.org/10.1073/pnas.1818371116
- Ratnieks, F. L. W., & Carreck, N. L. (2010). Clarity on honey bee collapse? Science, 327(5962), 152–153. https://doi.org/10.1126/science.1185563
- Richards, E. H., Jones, B., Bowman, A. (2011). Salivary secretions from the honeybee mite, Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 138(5), 602–608. https://doi.org/10.1017/S0031182011000072
- Richardson, R. T., Ballinger, M. N., Qian, F., Christman, J. W., Johnson, R. M. (2018). Morphological and functional characterization of honey bee, Apis mellifera, haemocyte cell communities. Apidologie, 49(3), 397–410. https://doi.org/10.1007/s13592-018-0566-2
- Riessberger, U., & Crailsheim, K. (1997). Short-term effect of different weather conditions upon the behaviour of forager and nurse honey bees (Apis mellifera carnica Pollmann). Apidologie, 28(6), 411–426. https://doi.org/10.1051/apido:19970608
- Riessberger-Gallé, U., Hernández López, J., Schuehly, W., Crockett, S., Krainer, S., Crailsheim, K.(2015). Immune responses of honeybees and their fitness costs as compared to bumblebees. Apidologie, 46(2), 238–249. https://doi.org/10.1007/s13592-014-0318-x
- Ryabov, E. V., Wood, G. R., Fannon, J. M., Moore, J. D., Bull, J. C., Chandler, D., … Evans, D. J. (2014). A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathogens, 10(6), e1004230. https://doi.org/10.1371/journal.ppat.1004230
- Salem, M. H., Gad, A. A., Ramadan, H. M. (2006). Effect of Varroa destructor on different haemocyte count, total haemolymph protein on larvae, pupae and adults of Apis mellifera drones. Journal of the Egyptian Society of Toxicology, 35, 93–96.
- Sammataro, D., Gerson, U., Needham, G. (2000). Parasitic mites of honey bees: life history, implications, and impact. Annual Review of Entomology, 45, 519–548. https://doi.org/10.1146/annurev.ento.45.1.519
- Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N. (2016). Are bee diseases linked to pesticides?-A brief review. Environment International, 89–90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009
- Sanjerehei, M. M. (2014). The economic value of bees as pollinators of crops in Iran. Annual Research & Review in Biology, 4(19), 2957–2964. https://doi.org/10.9734/ARRB/2014/10200
- Schmid, M. R., Brockmann, A., Pirk, C. W., Stanley, D. W., Tautz, J. (2008). Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. Journal of Insect Physiology, 54(2), 439–444. https://doi.org/10.1016/j.jinsphys.2007.11.002
- Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annual Review of Entomology, 50, 529–551. https://doi.org/10.1146/annurev.ento.50.071803.130420
- Seeley, T. D. (2014). Honeybee ecology: a study of adaptation in social life (Vol. 36). Princeton University Press.
- Sharma, R., & Martins, N. (2020). Telomeres, DNA damage and ageing: potential leads from Ayurvedic Rasayana (anti-ageing) drugs. Journal of Clinical Medicine, 9(8), 2544. https://doi.org/10.3390/jcm9082544
- Sharma, R., & Prajapati, P. K. (2014). Diet and lifestyle guidelines for diabetes: Evidence based Ayurvedic perspectives. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 21(4), 335–46.
- Sharma, R., Martins, N., Chaudhary, A., Garg, N., Sharma, V., Kuca, K., … Prajapati, P. K. (2020). Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends in Food Science & Technology, 106, 254–274. https://doi.org/10.1016/j.tifs.2020.10.020
- Sharma, R., Martins, N., Kuca, K., Chaudhary, A., Kabra, A., Rao, M.M., Prajapati, P.K. (2019). Chyawanprash: A Traditional Indian Bioactive Health Supplement. Biomolecules, 9(5), 161. https://doi.org/10.3390/biom9050161
- Shen, M., Yang, X., Cox-Foster, D., Cui, L. (2005). The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology, 342(1), 141–149. https://doi.org/10.1016/j.virol.2005.07.012
- Sies, H. (2000). What is oxidative stress? In: Keaney, J. F. (Eds), Oxidative stress and vascular disease (pp. 1–8). Springer, Boston, MA.
- Sihag, R. C. (2014). Phenology of migration and decline in colony numbers and crop hosts of giant honeybee (Apis dorsata F.) in semiarid environment of Northwest India. Journal of Insects, 2014. Article ID 639467. http://dx.doi.org/10.1155/2014/639467
- Simone-Finstrom, M. (2017). Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites. Bee World, 94(1), 21–29. https://doi.org/10.1080/0005772X.2017.1307800
- Simone-Finstrom, M. D., & Spivak, M. (2012). Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One, 7(3), e34601. https://doi.org/10.1371/journal.pone.0034601
- Simone-Finstrom, M., Li-Byarlay, H., Huang, M. H., Strand, M. K., Rueppell, O., Tarpy, D. R. (2016). Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Scientific Reports, 6. https://doi.org/10.1038/srep32023
- Siva-Jothy, M. T., & Thompson, J. J. W. (2002). Shortterm nutrient deprivation affects immune function. Physiological Entomology, 27(3), 206–212. https://doi.org/10.1046/j.1365-3032.2002.00286.x
- Southwick, E. E., & Heldmaier, G. (1987). Temperature control in honey bee colonies. Bioscience, 37(6), 395–399.
- Spivak, M., & Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32(6), 555–565. https://doi.org/10.1051/apido:2001103
- Stanimirović, Z., Glavinić, U., Ristanić, M., Aleksić, N., Jovanović, N., Vejnović, B., Stevanović, J. (2019). Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Veterinaria, 69(1), 1–31. https://doi.org/10.2478/acve-2019-0001
- Starks, P. T., Blackie, C. A., Seeley, T. D. (2000). Fever in honeybee colonies. Naturwissenschaften, 87(5), 229–231.
- Steinmann, N., Corona, M., Neumann, P., Dainat, B. (2015). Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS One, 10(6), e0129956. https://doi.org/10.1371/journal.pone.0129956
- Strand, M. R. (2008). The insect cellular immune response. Insect Science, 15(1), 1–14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
- Strauss, U., Pirk, C. W., Crewe, R. M., Human, H., Dietemann, V. (2015). Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa. Experimental and Applied Acarology, 65(1), 89–106. https://doi.org/10.1007/s10493-014-9842-7
- Szymaś, B., & Jędruszuk, A. (2003). The influence of different diets on haemocytes of adult worker honey bees, Apis mellifera. Apidologie, 34(2), 97–102. https://doi.org/10.1051/apido:2003012
- Trenczek, T., & Faye, I. (1988). Synthesis of immune proteins in primary cultures of fat body from Hyalophora cecropia. Insect Biochemistry, 18(3), 299–312. https://doi.org/10.1016/0020-1790(88)90095-9
- van der Zee, R., Pisa, L., Andonov, S., Brodschneider, R., Charriere, J. D., Chlebo, R., … Wilkins, S. (2012). Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. Journal of Apicultural Research, 51(1), 100–114. https://doi.org/10.3896/IBRA.1.51.1.12
- van Dooremalen, C., Gerritsen, L., Cornelissen, B., van der Steen, J. J. M., van Langevelde, F. Blacquiere, T. (2012). Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS One, 7(4), e36285. https://doi.org/10.1371/journal.pone.0036285
- van Dooremalen, C., Stam, E., Gerritsen, L., Cornelissen, B., van der Steen, J., van Langevelde, F., Blacquière, T. (2013). Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. Journal of Insect Physiology, 59(4), 487–493. https://doi.org/10.1016/j.jinsphys.2013.02.006
- Vandame, R., & Belzunces, L. P. (1998). Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation. Neuroscience Letters, 251(1), 57–60. https://doi.org/10.1016/S0304-3940(98)00494-7
- vanEngelsdorp, D., & Meixner, M. D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103, S80–S95. https://doi.org/10.1016/j.jip.2009.06.011
- Weidner, E., Findley, A. M., Dolgikh, V., Sokolova, J. (1999). Microsporidian biochemistry and physiology. In: Wittner, M., & Weiss, L. (Ed), The microsporidia and microsporidiosis (pp. 172–195). American Society of Microbiology. http://dx.doi.org/10.1128/9781555818227.ch5
- White Jr, J. W., Subers, M. H., Schepartz, A. I. (1963). The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects, 73(1), 57–70.
- Wilson-Rich, N., Dres, S. T., Starks, P. T. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of Insect Physiology, 54(10–11), 1392–1399. https://doi.org/10.1016/j.jinsphys.2008.07.016
- Wilson-Rich, N., Spivak, M., Fefferman, N. H., Starks, P. T. (2009). Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Review of Entomology, 54, 405–423. https://doi.org/10.1146/annurev.ento.53.103106.093301
- Yan, H., Jia, H., Wang, X., Gao, H., Guo, X., Xu, B. (2013). Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress. Naturwissenschaften, 100(2), 153–163. https://doi.org/10.1007/s00114-012-1006-1
- Yoshida, Y. (1988). Cytochrome P450 of fungi: primary target for azole antifungal agents. In: McGinnis, M. R. (Eds), Current Topics in Medical Mycology (pp. 388–418). Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3730-3_11
- Zakaria, M. E. (2007). The cellular immunity responses in the haemolymph of honey bee workers infected by American foulbrood disease (AFB). Journal of Applied Sciences Research, 3(1), 56–63.
- Zhu, M., Zhang, W., Liu, F., Chen, X., Li, H., Xu, B. (2016). Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses. Gene, 584(2), 120–128. https://doi.org/10.1016/j.gene.2016.02.016