Have a personal or library account? Click to login
Factors Affecting Immune Responses in Honey Bees: An Insight Cover

Factors Affecting Immune Responses in Honey Bees: An Insight

Open Access
|Jun 2021

References

  1. Ahima, R. S. (2016). Principles of energy homeostasis. In: Ahima, R. S. (Eds.), Metabolic Syndrome: A Comprehensive Textbook (pp. 311–326). Springer International Publishing, Cham.
  2. Ahn, K., Xie, X., Riddle, J., Pettis, J., Huang, Z. Y. (2012). Effects of long distance transportation on honey bee physiology. Psyche, 2012. https://doi.org/10.1155/2012/193029
  3. Aizen, M. A., & Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology, 19(11), 915–918. https://doi.org/10.1016/j.cub.2009.03.071
  4. Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., … Le Conte, Y. (2010a). Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12(3), 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x
  5. Alaux, C., Crauser, D., Pioz, M., Saulnier, C., Le Conte, Y. (2014). Parasitic and immune modulation of flight activity in honey bees tracked with optical counters. Journal of Experimental Biology, 217(19), 3416–3424. https://doi.org/10.1242/jeb.105783
  6. Alaux, C., Dantec, C., Parrinello, H., Le Conte, Y. (2011). Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics, 12, 496. https://doi.org/10.1186/1471-2164-12-496
  7. Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010b). Diet effects on honeybee immunocompetence. Biology Letters, 6(4), 562–565. https://doi.org/10.1098/rsbl.2009.0986
  8. Albrecht, H. (2005). Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming. Weed Research, 45(5), 339–350. https://doi.org/10.1111/j.1365-3180.2005.00472.x
  9. Aldea, P., & Bozinovic, F. (2020). The energetic and survival costs of Varroa parasitism in honeybees. Apidologie, 51, 997–1005. https://doi.org/10.1007/s13592-020-00777-y
  10. Allen, M., & Ball, B. (1996). The incidence and world distribution of honey bee viruses. Bee World, 77(3), 141–162. https://doi.org/10.1080/0005772X.1996.11099306
  11. Amdam, G. V., & Omholt, S. W. (2003). The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. Journal of Theoretical Biology, 223(4), 451–464. https://doi.org/10.1016/S0022-5193(03)00121-8
  12. Antúnez, K., Harriet, J., Gende, L., Maggi, M., Eguaras, M., Zunino, P. (2008). Efficacy of natural propolis extract in the control of American Foulbrood. Veterinary Microbiology, 131(3–4), 324–331. https://doi.org/10.1016/j.vetmic.2008.04.011
  13. Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 11(9), 2284–2290. https://doi.org/10.1111/j.1462-2920.2009.01953.x
  14. Aufauvre, J., Misme-Aucouturier, B., Viguès, B., Texier, C., Delbac, F., Blot, N. (2014). Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One, 9(3), e91686. https://doi.org/10.1371/journal.pone.0091686
  15. Baena-González, E. (2010). Energy signalling in the regulation of gene expression during stress. Molecular Plant, 3(2), 300–313. https://doi.org/10.1093/mp/ssp113
  16. Balieira, K. V. B., Mazzo, M., Bizerra, P. F. V., Guimarães, A. R. D. J. S., Nicodemo, D., Mingatto, F. E. (2018). Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. Apidologie, 49(5), 562–572. https://doi.org/10.1007/s13592-018-0583-1
  17. Ball, B. V., & Allen, M. F. (1988). The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Annals of Applied Biology, 113(2), 237–244. https://doi.org/10.1111/j.1744-7348.1988.tb03300.x
  18. Bascompte, J., Jordano, P., Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312(5772), 431–433. https://doi.org/10.1126/science.1123412
  19. Belzunces, L. P., Tchamitchian, S., Brunet, J. L. (2012). Neural effects of insecticides in the honey bee. Apidologie, 43(3), 348–370. https://doi.org/10.1007/s13592-012-0134-0
  20. Bhatnagar, P., Lata, P., Singh, F., Singh, S. (2020). Hive Products and Their Uses. Biotica Research Today, 2(8), 808–811.
  21. Boman, H. G., & Hultmark, D. (1987). Cell-free immunity in insects. Annual Reviews of Microbiology, 41, 103–126. https://doi.org/10.1146/annurev.mi.41.100187.000535
  22. Boncristiani, H., Underwood, R., Schwarz, R., Evans, J. D., Pettis, J. (2012). Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. Journal of Insect Physiology, 58(5), 613–620. https://doi.org/10.1016/j.jinsphys.2011.12.011
  23. Bordier, C., Dechatre, H., Suchail, S., Peruzzi, M., Soubeyrand, S., Pioz, M., … Alaux, C. (2017). Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera). Scientific Reports, 7(2760). https://doi.org/10.1038/s41598-017-03944-x
  24. Brandt, A., Gorenflo, A., Siede, R., Meixner, M., Büchler, R. (2016). The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of Insect Physiology, 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001
  25. Brandt, A., Grikscheit, K., Siede, R., Grosse, R., Meixner, M. D., Büchler, R. (2017). Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Scientific Reports, 7(4673). https://doi.org/10.1038/s41598-017-04734-1
  26. Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3), 278–294. https://doi.org/10.1051/apido/2010012
  27. Brutscher, L. M., Daughenbaugh, K. F., Flenniken, M. L. (2015). Antiviral defense mechanisms in honey bees. Current Opinion in Insect Science, 10, 71–82. https://doi.org/10.1016/j.cois.2015.04.016
  28. Campbell, J., Kessler, B., Mayack, C., Naug, D. (2010). Behavioural fever in infected honeybees: parasitic manipulation or coincidental benefit? Parasitology, 137(10), 1487–1491. https://doi.org/10.1017/S0031182010000235
  29. Cerenius, L., Lee, B. L., Söderhäll, K. (2008). The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology, 29(6), 263–271. https://doi.org/10.1016/j.it.2008.02.009
  30. Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J. D., Pettis, J. S. (2012). Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 58(8), 1090–1095. https://doi.org/10.1016/j.jinsphys.2012.04.016
  31. Chakrabarti, P., Carlson, E. A., Lucas, H. M., Melathopoulos, A. P., Sagili, R. R. (2020). Field rates of Sivanto™ (flupyradifurone) and Transform® (sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). PLoS One, 15(5), e0233033. https://doi.org/10.1371/journal.pone.0233033
  32. Chakrabarti, P., Rana, S., Sarkar, S., Smith, B., Basu, P. (2015). Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie, 46(1), 107–129. https://doi.org/10.1007/s13592-014-0308-z
  33. Cheeseman, K. H. (1993). Mechanisms and effects of lipid peroxidation. Molecular Aspects of Medicine, 14(3), 191–197. https://doi.org/10.1016/0098-2997(93)90005-X
  34. Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R., Feyereisen, R., Oakeshott, J. G. (2006). A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 15(5), 615–636. https://doi.org/10.1111/j.1365-2583.2006.00672.x
  35. Clissold, F. J., Coggan, N., Simpson, S. J. (2013). Insect herbivores can choose microclimates to achieve nutritional homeostasis. Journal of Experimental Biology, 216(11), 2089–2096. https://doi.org/10.1242/jeb.078782
  36. Corona, M., Branchiccela, B., Madella, S., Chen, Y., Evans, J. (2019). Decoupling the effects of nutrition, age and behavioral caste on honey bee physiology and immunity. BioRxiv, 667931. https://doi.org/10.1101/667931
  37. Cousin, M., Silva-Zacarin, E., Kretzschmar, A., El Maataoui, M., Brunet, J. L., Belzunces, L. P. (2013). Size changes in honey bee larvae oenocytes induced by exposure to paraquat at very low concentrations. PLoS One, 8(5), e65693. https://doi.org/10.1371/journal.pone.0065693
  38. Cremer, S., Armitage, S. A., Schmid-Hempel, P. (2007). Socialimmunity. CurrentBiology, 17(16), R693–R702. https://doi.org/10.1016/j.cub.2007.06.008
  39. Currie, R. W., Pernal, S. F., Guzmán-Novoa, E. (2010). Honey bee colony losses in Canada. Journal of Apicultural Research, 49(1), 104–106. https://doi.org/10.3896/IBRA.1.49.1.18
  40. Dai, P., Yan, Z., Ma, S., Yang, Y., Wang, Q., Hou, C., … Diao, Q. (2018). The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. Journal of Agricultural and Food Chemistry, 66(29), 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212
  41. Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L., Neumann, P. (2012a). Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Applied and Environmental Microbiology, 78(4), 981–987. https://doi.org/10.1128/AEM.06537-11
  42. Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L., Neumann, P. (2012b). Predictive markers of honey bee colony collapse. PLoS One, 7(2), e32151. https://doi.org/10.1371/journal.pone.0032151
  43. Danihlík, J., Aronstein, K., Petřivalský, M. (2015). Antimicrobial peptides: a key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. Journal of Apicultural Research, 54(2), 123–136. https://doi.org/10.1080/00218839.2015.1109919
  44. Danka, R. G., & Villa, J. D. (1998). Evidence of autogrooming as a mechanism of honey bee resistance to tracheal mite infestation. Journal of Apicultural Research, 37(1), 39–46. https://doi.org/10.1080/00218839.1998.11100953
  45. Davies, M. J. (2016). Protein oxidation and peroxidation. Biochemical Journal, 473(7), 805–825. https://doi.org/10.1042/BJ20151227
  46. DeGrandi-Hoffman, G., & Chen, Y. (2015). Nutrition, immunity and viral infections in honey bees. Current Opinion in Insect Science, 10, 170–176. https://doi.org/10.1016/j.cois.2015.05.007
  47. Di Prisco, G., Annoscia, D., Margiotta, M., Ferrara, R., Varricchio, P., Zanni, V., … Pennacchio, F. (2016). A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences, 113(12), 3203–3208. https://doi.org/10.1073/pnas.1523515113
  48. Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F. (2013). Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences, 110(46), 18466–18471. https://doi.org/10.1073/pnas.1314923110
  49. Dickel, F., Münch, D., Amdam, G. V., Mappes, J., Freitak, D. (2018). Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One, 13(1), e0191256. https://doi.org/10.1371/journal.pone.0191256
  50. Eischen, F. A. (1987). Overwintering performance of honey bee colonies heavily infested with Acarapis woodi (Rennie). Apidologie, 18(4), 293–304. https://doi.org/10.1051/apido:19870401
  51. Esch, H. (1988). The effects of temperature on flight muscle potentials in honeybees and cuculiinid winter moths. Journal of Experimental Biology, 135, 109–117.
  52. Evans, J. D., & Pettis, J. S. (2005). Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution, 59(10), 2270–2274. https://doi.org/10.1111/j.0014-3820.2005.tb00935.x
  53. Evans, J. D., & Spivak, M. (2010). Socialized medicine: individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103, S62–S72. https://doi.org/10.1016/j.jip.2009.06.019
  54. Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., … Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 15(5), 645–656. https://doi.org/10.1111/j.1365-2583.2006.00682.x
  55. Farooqui, T. (2008). Iron-induced oxidative stress modulates olfactory learning and memory in honeybees. Behavioral Neuroscience, 122(2), 433–447. https://doi.org/10.1037/0735-7044.122.2.433
  56. Fievet, J., Tentcheva, D., Gauthier, L., De Miranda, J., Cousserans, F., Colin, M. E., Bergoin, M. (2006). Localization of deformed wing virus infection in queen and drone Apis mellifera L. Virology Journal, 3(16). https://doi.org/10.1186/1743-422X-3-16
  57. Flores, J. M., Ruiz, J. A., Ruz, J. M., Puerta, F., Bustos, M., Padilla, F., Campano, F. (1996). Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions. Apidologie, 27(4), 185–192. https://doi.org/10.1051/apido:19960401
  58. Fontaine, C., Dajoz, I., Meriguet, J., Loreau, M. (2005). Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biology, 4(1), e1. https://doi.org/10.1371/journal.pbio.0040001
  59. Forsgren, E., De Miranda, J. R., Isaksson, M., Wei, S., Fries, I. (2009). Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera). Experimental and Applied Acarology, 47(2), 87–97. https://doi.org/10.1007/s10493-008-9204-4
  60. Fries, I., Feng, F., da Silva, A., Slemenda, S. B., Pieniazek, N. J. (1996). Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 32(3), 356–365. https://doi.org/10.1016/S0932-4739(96)80059-9
  61. Garrido, P. M., Antúnez, K., Martín, M., Porrini, M. P., Zunino, P., Eguaras, M. J. (2013). Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides. Journal of Insect Physiology, 59(1), 113–119. https://doi.org/10.1016/j.jinsphys.2012.10.019
  62. Gauthier, L., Tentcheva, D., Tournaire, M., Dainat, B., Cousserans, F., Colin, M. E., Bergoin, M. (2007). Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique. Apidologie, 38(5), 426–435. https://doi.org/10.1051/apido:2007026
  63. Genersch, E., Von Der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Büchler, R., … Meixner, M. (2010). The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 41(3), 332–352. https://doi.org/10.1051/apido/2010014
  64. Gillespie, J. P., Kanost, M. R., Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611–643. https://doi.org/10.1146/annurev.ento.42.1.611
  65. Gilliam, M. (1997). Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiology Letters, 155(1), 1–10. https://doi.org/10.1111/j.1574-6968.1997.tb12678.x
  66. Gilliam, M., Taber III, S., Richardson, G. V. (1983). Hygienic behavior of honey bees in relation to chalkbrood disease. Apidologie, 14(1), 29–39.
  67. Gliński, Z., & Jarosz, J. (1992). Varroa jacobsoni as a carrier of bacterial infections to a recipient bee host. Apidologie, 23(1), 25–31. https://doi.org/10.1051/apido:19920103
  68. Gliński, Z., & Jarosz, J. (1995). Mechanical and biochemical defences of honey bees. Bee World, 76(3), 110–118. https://doi.org/10.1080/0005772X.1995.11099257
  69. Goulson, D., Nicholls, E., Botias, C., Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides and lack of flowers. Science, 347(6229). https://doi.org/10.1126/science.1255957
  70. Gregorc, A., & Bowen, I. D. (1998). Histopathological and histochemical changes in honeybee larvae (Apis mellifera L.) after infection with Bacillus larvae, the causative agent of American foulbrood disease. Cell Biology International, 22(2), 137–144. https://doi.org/10.1006/cbir.1998.0232
  71. Gregorc, A., Evans, J. D., Scharf, M., Ellis, J. D. (2012). Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). Journal of Insect Physiology, 58(8),1042–1049. https://doi.org/10.1016/j.jinsphys.2012.03.015
  72. Gross, M. (2007). Bee puzzles. Current Biology, 17(11), R389. https://doi.org/10.1016/j.cub.2007.05.027
  73. Guzman-Novoa, E., Emsen, B., Unger, P., Espinosa-Montaño, L. G., Petukhova, T. (2012). Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.). Journal of Invertebrate Pathology, 110(3), 314–320. https://doi.org/10.1016/j.jip.2012.03.020
  74. Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., … Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079), 348–350. https://doi.org/10.1126/science.1215039
  75. HGSC (The Honeybee Genome Sequencing Consortium) (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443(7114), 931–949. https://doi.org/10.1038/nature05260
  76. Higes, M., García-Palencia, P., Martín-Hernández, R., Meana, A. (2007). Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 94(3), 211–217. https://doi.org/10.1016/j.jip.2006.11.001
  77. Huang, Z. (2012). Pollen nutrition affects honey bee stress resistance. Terrestrial Arthropod Reviews, 5(2), 175–189. https://doi.org/10.1163/187498312X639568
  78. Ibrahim, A., Reuter, G. S., Spivak, M. (2007). Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor. Apidologie, 38(1), 67–76. https://doi.org/10.1051/apido:2006065
  79. James, R. R., & Xu, J. (2012). Mechanisms by which pesticides affect insect immunity. Journal of Invertebrate Pathology, 109(2), 175–182. https://doi.org/10.1016/j.jip.2011.12.005
  80. Janashia, I., & Alaux, C. (2016). Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae). Journal of Economic Entomology, 109(3), 1474–1477. https://doi.org/10.1093/jee/tow065
  81. Jena, N. R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. Journal of Biosciences, 37(3), 503–517. https://doi.org/10.1007/s12038-012-9218-2
  82. Jivan, A. (2013). The impact of pesticides on honey bees and hence on humans. Scientific Papers Animal Science and Biotechnologies, 46(2), 272–277.
  83. Johnson, R. M., Dahlgren, L., Siegfried, B. D., Ellis, M. D. (2013). Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One, 8(1), e54092. https://doi.org/10.1371/journal.pone.0054092
  84. Jones, J. C. (1962). Current concepts concerning insect hemocytes. American Zoologist, 2(2), 209–246.
  85. Kaaya, G. P. (1993). Inducible humoral antibacterial immunity in insects. In: Pathak, J. P. N. (Eds.), Insect Immunity (pp. 69–89). Springer, Dordrecht.
  86. Khongphinitbunjong, K., de Guzman, L. I., Tarver, M. R., Rinderer, T. E., Chantawannakul, P. (2015). Interactions of Tropilaelaps mercedesae, honey bee viruses and immune response in Apis mellifera. Journal of Apicultural Research, 54(1), 40–47. https://doi.org/10.1080/00218839.2015.1041311
  87. Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
  88. Kronenberg, F., & Heller, H. C. (1982). Colonial thermoregulation in honey bees (Apis mellifera). Journal of Comparative Physiology A, 148(1), 65–76. https://doi.org/10.1007/BF00688889
  89. Kurze, C., Le Conte, Y., Dussaubat, C., Erler, S., Kryger, P., Lewkowski, O., … Moritz, R. F. (2015). Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS One, 10(10), e0140174. https://doi.org/10.1371/journal.pone.0140174
  90. Larsen, A., Reynaldi, F. J., Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Revista Mexicana de Ciencias Pecuarias, 10(3), 705–728.
  91. Laughton, A. M., Boots, M., Siva-Jothy, M. T. (2011). The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge. Journal of Insect Physiology, 57(7), 1023–1032. https://doi.org/10.1016/j.jinsphys.2011.04.020
  92. Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27(2), 499–510.
  93. Li, G., Zhao, H., Liu, Z., Wang, H., Xu, B., Guo, X. (2018). The wisdom of honeybee defenses against environmental stresses. Frontiers in Microbiology, 9, 722. https://doi.org/10.3389/fmicb.2018.00722
  94. Li, G., Zhao, H., Wang, H., Guo, X., Guo, X., Sun, Q., Xu, B. (2016). Characterization of a decapentapletic gene (AccDpp) from Apis cerana cerana and its possible involvement in development and response to oxidative stress. PLoS One, 11(2), e0149117. https://doi.org/10.1371/journal.pone.0149117
  95. Li, J., Heerman, M. C., Evans, J. D., Rose, R., Li, W., Rodríguez-García, C., … Hamilton, M. (2019). Pollen reverses decreased lifespan, altered nutritional metabolism and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics. Journal of Experimental Biology, 222(7), 1–9. https://doi.org/10.1242/jeb.202077
  96. Liu, T. P. (1984). Ultrastructure of the midgut of the worker honey bee Apis mellifera heavily infected with Nosema apis. Journal of Invertebrate Pathology, 44(3), 282–291. https://doi.org/10.1016/0022-2011(84)90026-0
  97. Liu, T. P. (1996). Varroa mites as carriers of honey-bee chalkbrood. American Bee Journal (USA). 136(9).
  98. Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee Jr, R. E., Denlinger, D. L. (2008). High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology, 38(8), 796–804. https://doi.org/10.1016/j.ibmb.2008.05.006
  99. Mallon, E. B., Brockmann, A., Schmid-Hempel, P. (2003). Immune response inhibits associative learning in insects. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1532), 2471–2473. https://doi.org/10.1098/rspb.2003.2456
  100. Mao, W., Schuler, M. A., Berenbaum, M. R. (2013). Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences, 110(22), 8842–8846. https://doi.org/10.1073/pnas.1303884110
  101. Martel, A. C., Zeggane, S., Aurières, C., Drajnudel, P., Faucon, J. P., Aubert, M. (2007). Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®50*. Apidologie, 38(6), 534–544. https://doi.org/10.1051/apido:2007038
  102. Martín-Hernández, R., Botías, C., Barrios, L., Martínez-Salvador, A., Meana, A., Mayack, C., Higes, M. (2011). Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitology Research, 109(3), 605–612. https://doi.org/10.1007/s00436-011-2292-9
  103. May, E., Wilson, J., Isaacs, R. (2015). Minimizing pesticide risk to bees in fruit crops. Extension Bulletin Michigan State University-E3245, 1–16.
  104. Mayack, C., & Naug, D. (2009). Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertebrate Pathology, 100(3), 185–188. https://doi.org/10.1016/j.jip.2008.12.001
  105. Mayack, C., & Naug, D. (2010). Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. Journal of Insect Physiology, 56(11), 1572–1575. https://doi.org/10.1016/j.jinsphys.2010.05.016
  106. McKinstry, M., Chung, C., Truong, H., Johnston, B. A., Snow, J. W. (2017). The heat shock response and humoral immune response are mutually antagonistic in honey bees. Scientific Reports, 7(8850). https://doi.org/10.1038/s41598-017-09159-4
  107. McMullan, J. B., & Brown, M. J. F. (2009). A qualitative model of mortality in honey bee (Apis mellifera) colonies infested with tracheal mites (Acarapis woodi). Experimental and Applied Acarology, 47, 225–234. https://doi.org/10.1007/s10493-008-9213-3
  108. Medrzycki, P., Sgolastra, F., Bortolotti, L., Bogo, G., Tosi, S., Padovani, E., Porrini, C., Sabatini, A. G. (2010). Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides. Journal of Apicultural Research, 49(1), 52–59. https://doi.org/10.3896/IBRA.1.49.1.07
  109. Meikle, W. G., Adamczyk, J. J., Weiss, M., Gregorc, A., Johnson, D. R., Stewart, S. D., … Lorenz, G. M. (2016). Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the US. PLoS One, 11(12), e0168603. https://doi.org/10.1371/journal.pone.0168603
  110. Melicher, D., Wilson, E. S., Bowsher, J. H., Peterson, S. S., Yocum, G. D., Rinehart, J. P. (2019). Long-distance transportation causes temperature stress in the honey bee, Apis mellifera (Hymenoptera: Apidae). Environmental Entomology, 48(3), 691–701. https://doi.org/10.1093/ee/nvz027
  111. Moret, Y., & Schmid-Hempel, P. (2000). Survival for immunity: The price of immune system activation for bumblebee workers. Science, 290(5494), 1166–1168. https://doi.org/10.1126/science.290.5494.1166
  112. Morimoto, T., Kojima, Y., Toki, T., Komeda, Y., Yoshiyama, M., Kimura, K., Nirasawa, K., Kadowaki, T. (2011). The habitat disruption induces immune-suppression and oxidative stress in honey bees. Ecology and Evolution, 1(2), 201–217. https://doi.org/10.1002/ece3.21
  113. Motta, E. V., Raymann, K., Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115
  114. Naug, D., & Camazine, S. (2002). The role of colony organization on pathogen transmission in social insects. Journal of Theoretical Biology, 215(4), 427–439. https://doi.org/10.1006/jtbi.2001.2524
  115. Nazzi, F., & Pennacchio, F. (2014). Disentangling multiple interactions in the hive ecosystem. Trends in Parasitology, 30(12), 556–561. https://doi.org/10.1016/j.pt.2014.09.006
  116. Nazzi, F., Brown, S. P., Annoscia, D., Del Piccolo, F., Di Prisco, G., Varricchio, P., … Pennacchio, F. (2012). Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathogens, 8(6), e1002735. https://doi.org/10.1371/journal.ppat.1002735
  117. Negri, P., Maggi, M. D., Ramirez, L., De Feudis, L., Szwarski, N., Quintana, S., Eguaras, M. J., Lamattina, L. (2015). Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie, 46(4), 542–557. https://doi.org/10.1007/s13592-014-0345-7
  118. Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. Jr., Amdam, G. V. (2007). The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biology, 5(3), e62. https://doi.org/10.1371/journal.pbio.0050062
  119. Ollerton, J., Winfree, R., Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x
  120. Pamminger, T., Botías, C., Goulson, D., Hughes, W. O. H. (2018). A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional Ecology, 32(8), 1921–1930. https://doi.org/10.1111/1365-2435.13119
  121. Perry, C. J., Søvik, E., Myerscough, M. R., Barron, A. B. (2015). Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proceedings of the National Academy of Sciences, 112(11), 3427–3432. https://doi.org/10.1073/pnas.1422089112
  122. Perveen, N., & Ahmad, M. (2017). Toxicity of some insecticides to the haemocytes of giant honeybee, Apis dorsata F. under laboratory conditions. Saudi Journal of Biological Sciences, 24(5), 1016–1022. https://doi.org/10.1016/j.sjbs.2016.12.011
  123. Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R., vanEngelsdorp, D. (2013). Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One, 8(7), e70182. https://doi.org/10.1371/journal.pone.0070182
  124. Pettis, J. S., vanEngelsdorp, D., Johnson, J., Dively, G. (2012). Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2), 153–158. https://doi.org/10.1007/s00114-011-0881-1
  125. Ponnappan, S., & Ponnappan, U. (2011). Aging and immune function: molecular mechanisms to interventions. Antioxidants & Redox Signaling, 14(8), 1551–1585. https://doi.org/10.1089/ars.2010.3228
  126. Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007
  127. Rabasa, C., & Dickson, S. L. (2016). Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 9, 71–77. https://doi.org/10.1016/j.cobeha.2016.01.011
  128. Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., … vanEngelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792–1801. https://doi.org/10.1073/pnas.1818371116
  129. Ratnieks, F. L. W., & Carreck, N. L. (2010). Clarity on honey bee collapse? Science, 327(5962), 152–153. https://doi.org/10.1126/science.1185563
  130. Richards, E. H., Jones, B., Bowman, A. (2011). Salivary secretions from the honeybee mite, Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 138(5), 602–608. https://doi.org/10.1017/S0031182011000072
  131. Richardson, R. T., Ballinger, M. N., Qian, F., Christman, J. W., Johnson, R. M. (2018). Morphological and functional characterization of honey bee, Apis mellifera, haemocyte cell communities. Apidologie, 49(3), 397–410. https://doi.org/10.1007/s13592-018-0566-2
  132. Riessberger, U., & Crailsheim, K. (1997). Short-term effect of different weather conditions upon the behaviour of forager and nurse honey bees (Apis mellifera carnica Pollmann). Apidologie, 28(6), 411–426. https://doi.org/10.1051/apido:19970608
  133. Riessberger-Gallé, U., Hernández López, J., Schuehly, W., Crockett, S., Krainer, S., Crailsheim, K.(2015). Immune responses of honeybees and their fitness costs as compared to bumblebees. Apidologie, 46(2), 238–249. https://doi.org/10.1007/s13592-014-0318-x
  134. Ryabov, E. V., Wood, G. R., Fannon, J. M., Moore, J. D., Bull, J. C., Chandler, D., … Evans, D. J. (2014). A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathogens, 10(6), e1004230. https://doi.org/10.1371/journal.ppat.1004230
  135. Salem, M. H., Gad, A. A., Ramadan, H. M. (2006). Effect of Varroa destructor on different haemocyte count, total haemolymph protein on larvae, pupae and adults of Apis mellifera drones. Journal of the Egyptian Society of Toxicology, 35, 93–96.
  136. Sammataro, D., Gerson, U., Needham, G. (2000). Parasitic mites of honey bees: life history, implications, and impact. Annual Review of Entomology, 45, 519–548. https://doi.org/10.1146/annurev.ento.45.1.519
  137. Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N. (2016). Are bee diseases linked to pesticides?-A brief review. Environment International, 89–90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009
  138. Sanjerehei, M. M. (2014). The economic value of bees as pollinators of crops in Iran. Annual Research & Review in Biology, 4(19), 2957–2964. https://doi.org/10.9734/ARRB/2014/10200
  139. Schmid, M. R., Brockmann, A., Pirk, C. W., Stanley, D. W., Tautz, J. (2008). Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. Journal of Insect Physiology, 54(2), 439–444. https://doi.org/10.1016/j.jinsphys.2007.11.002
  140. Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annual Review of Entomology, 50, 529–551. https://doi.org/10.1146/annurev.ento.50.071803.130420
  141. Seeley, T. D. (2014). Honeybee ecology: a study of adaptation in social life (Vol. 36). Princeton University Press.
  142. Sharma, R., & Martins, N. (2020). Telomeres, DNA damage and ageing: potential leads from Ayurvedic Rasayana (anti-ageing) drugs. Journal of Clinical Medicine, 9(8), 2544. https://doi.org/10.3390/jcm9082544
  143. Sharma, R., & Prajapati, P. K. (2014). Diet and lifestyle guidelines for diabetes: Evidence based Ayurvedic perspectives. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 21(4), 335–46.
  144. Sharma, R., Martins, N., Chaudhary, A., Garg, N., Sharma, V., Kuca, K., … Prajapati, P. K. (2020). Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends in Food Science & Technology, 106, 254–274. https://doi.org/10.1016/j.tifs.2020.10.020
  145. Sharma, R., Martins, N., Kuca, K., Chaudhary, A., Kabra, A., Rao, M.M., Prajapati, P.K. (2019). Chyawanprash: A Traditional Indian Bioactive Health Supplement. Biomolecules, 9(5), 161. https://doi.org/10.3390/biom9050161
  146. Shen, M., Yang, X., Cox-Foster, D., Cui, L. (2005). The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology, 342(1), 141–149. https://doi.org/10.1016/j.virol.2005.07.012
  147. Sies, H. (2000). What is oxidative stress? In: Keaney, J. F. (Eds), Oxidative stress and vascular disease (pp. 1–8). Springer, Boston, MA.
  148. Sihag, R. C. (2014). Phenology of migration and decline in colony numbers and crop hosts of giant honeybee (Apis dorsata F.) in semiarid environment of Northwest India. Journal of Insects, 2014. Article ID 639467. http://dx.doi.org/10.1155/2014/639467
  149. Simone-Finstrom, M. (2017). Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites. Bee World, 94(1), 21–29. https://doi.org/10.1080/0005772X.2017.1307800
  150. Simone-Finstrom, M. D., & Spivak, M. (2012). Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One, 7(3), e34601. https://doi.org/10.1371/journal.pone.0034601
  151. Simone-Finstrom, M., Li-Byarlay, H., Huang, M. H., Strand, M. K., Rueppell, O., Tarpy, D. R. (2016). Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Scientific Reports, 6. https://doi.org/10.1038/srep32023
  152. Siva-Jothy, M. T., & Thompson, J. J. W. (2002). Shortterm nutrient deprivation affects immune function. Physiological Entomology, 27(3), 206–212. https://doi.org/10.1046/j.1365-3032.2002.00286.x
  153. Southwick, E. E., & Heldmaier, G. (1987). Temperature control in honey bee colonies. Bioscience, 37(6), 395–399.
  154. Spivak, M., & Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32(6), 555–565. https://doi.org/10.1051/apido:2001103
  155. Stanimirović, Z., Glavinić, U., Ristanić, M., Aleksić, N., Jovanović, N., Vejnović, B., Stevanović, J. (2019). Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Veterinaria, 69(1), 1–31. https://doi.org/10.2478/acve-2019-0001
  156. Starks, P. T., Blackie, C. A., Seeley, T. D. (2000). Fever in honeybee colonies. Naturwissenschaften, 87(5), 229–231.
  157. Steinmann, N., Corona, M., Neumann, P., Dainat, B. (2015). Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS One, 10(6), e0129956. https://doi.org/10.1371/journal.pone.0129956
  158. Strand, M. R. (2008). The insect cellular immune response. Insect Science, 15(1), 1–14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
  159. Strauss, U., Pirk, C. W., Crewe, R. M., Human, H., Dietemann, V. (2015). Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa. Experimental and Applied Acarology, 65(1), 89–106. https://doi.org/10.1007/s10493-014-9842-7
  160. Szymaś, B., & Jędruszuk, A. (2003). The influence of different diets on haemocytes of adult worker honey bees, Apis mellifera. Apidologie, 34(2), 97–102. https://doi.org/10.1051/apido:2003012
  161. Trenczek, T., & Faye, I. (1988). Synthesis of immune proteins in primary cultures of fat body from Hyalophora cecropia. Insect Biochemistry, 18(3), 299–312. https://doi.org/10.1016/0020-1790(88)90095-9
  162. van der Zee, R., Pisa, L., Andonov, S., Brodschneider, R., Charriere, J. D., Chlebo, R., … Wilkins, S. (2012). Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. Journal of Apicultural Research, 51(1), 100–114. https://doi.org/10.3896/IBRA.1.51.1.12
  163. van Dooremalen, C., Gerritsen, L., Cornelissen, B., van der Steen, J. J. M., van Langevelde, F. Blacquiere, T. (2012). Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS One, 7(4), e36285. https://doi.org/10.1371/journal.pone.0036285
  164. van Dooremalen, C., Stam, E., Gerritsen, L., Cornelissen, B., van der Steen, J., van Langevelde, F., Blacquière, T. (2013). Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. Journal of Insect Physiology, 59(4), 487–493. https://doi.org/10.1016/j.jinsphys.2013.02.006
  165. Vandame, R., & Belzunces, L. P. (1998). Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation. Neuroscience Letters, 251(1), 57–60. https://doi.org/10.1016/S0304-3940(98)00494-7
  166. vanEngelsdorp, D., & Meixner, M. D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103, S80–S95. https://doi.org/10.1016/j.jip.2009.06.011
  167. Weidner, E., Findley, A. M., Dolgikh, V., Sokolova, J. (1999). Microsporidian biochemistry and physiology. In: Wittner, M., & Weiss, L. (Ed), The microsporidia and microsporidiosis (pp. 172–195). American Society of Microbiology. http://dx.doi.org/10.1128/9781555818227.ch5
  168. White Jr, J. W., Subers, M. H., Schepartz, A. I. (1963). The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects, 73(1), 57–70.
  169. Wilson-Rich, N., Dres, S. T., Starks, P. T. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of Insect Physiology, 54(10–11), 1392–1399. https://doi.org/10.1016/j.jinsphys.2008.07.016
  170. Wilson-Rich, N., Spivak, M., Fefferman, N. H., Starks, P. T. (2009). Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Review of Entomology, 54, 405–423. https://doi.org/10.1146/annurev.ento.53.103106.093301
  171. Yan, H., Jia, H., Wang, X., Gao, H., Guo, X., Xu, B. (2013). Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress. Naturwissenschaften, 100(2), 153–163. https://doi.org/10.1007/s00114-012-1006-1
  172. Yoshida, Y. (1988). Cytochrome P450 of fungi: primary target for azole antifungal agents. In: McGinnis, M. R. (Eds), Current Topics in Medical Mycology (pp. 388–418). Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3730-3_11
  173. Zakaria, M. E. (2007). The cellular immunity responses in the haemolymph of honey bee workers infected by American foulbrood disease (AFB). Journal of Applied Sciences Research, 3(1), 56–63.
  174. Zhu, M., Zhang, W., Liu, F., Chen, X., Li, H., Xu, B. (2016). Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses. Gene, 584(2), 120–128. https://doi.org/10.1016/j.gene.2016.02.016
DOI: https://doi.org/10.2478/jas-2021-0012 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 25 - 47
Submitted on: Dec 10, 2020
Accepted on: Mar 8, 2021
Published on: Jun 24, 2021
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Gurleen Kaur, Rohit Sharma, Ashun Chaudhary, Randeep Singh, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution 4.0 License.