Have a personal or library account? Click to login
Location and Strength of Malvolio Expression in Chinese Honeybee Reveals Its Potential Role in Labor Division Cover

Location and Strength of Malvolio Expression in Chinese Honeybee Reveals Its Potential Role in Labor Division

Open Access
|Apr 2021

References

  1. Ben-Shahar, Y., Robichon, A., Sokolowski, M. B., Robinson, G. E. (2002). Influence of gene action across different time scales on behavior. Science, 296(5568), 741–744. DOI: 10.1126/science.1069911
  2. Ben-Shahar, Y., Dudek, N. L., Robinson, G. E. (2004). Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. Journal of Experimental Biology, 207(19), 3281–3288. DOI: 10.1242/jeb.01151
  3. Cardoso, G. A., Marinho, M. A., Monfardini, R. D., Espin, A. M., Torres, T. T. (2016). Evolution of genes involved in feeding preference and metabolic processes in Calliphoridae (Diptera: Calyptratae). PeerJ, 2016, 4(10), e2598. DOI: 10.7717/peerj.2598
  4. Denison, R., & Raymond-Delpech, V. (2008). Insights into the molecular basis of social behaviour from studies on the honeybee, Apis mellifera. Invertebrate Neuroscience, 8(1), 1–9. DOI: 10.1007/s10158-008-0066-6
  5. Ehmer, B., & Gronenberg, W. (2002). Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). The Journal of Comparative Neurology, 451(4), 362–373. DOI: 10.1002/cne.10355
  6. Folwell, J. L., Barton, C. H., Shepherd, D. (2006). Immunolocalisation of the D. melanogaster nramp homologue malvolio to gut and malpighian tubules provides evidence that malvolio and nramp2 are orthologous. Journal of Experimental Biology, 209(10), 1988–1995. DOI: 10.1242/jeb.02193
  7. Gemeda, T. K., Shao, Y. Q., Wu, W. Q., Yang, H. P., Huang, J. X., Wu, J. (2017). Native honey bees outperform adventive honey bees in increasing Pyrus bretschneideri (Rosales: Rosaceae) Pollination. Journal of Economic Entomology, 110(6), 2290–2294. DOI: 10.1093/jee/tox286
  8. Gronenberg, W. (2001). Subdivisions of hymenopteran mushroom body calyces by their afferent supply. The Journal of Comparative Neurology, 435(4), 474–489. DOI: 10.1002/cne.1045
  9. Heylen, K., Gobin, B., Billen, J., Hu, T. T., Arckens, L. Huybrechts, R. (2008). Amfor expression in the honeybee brain: a trigger mechanism for nurse-forager transition. Jouranl of Insect Physiology, 54(10), 1400–1403. DOI: 10.1016/j.jinsphys.2008.07.015
  10. Lattorff, H. M., & Moritz, R. F. (2013). Genetic underpinnings of division of labor in the honeybee (Apis mellifera). Trends in Genetics, 29(11), 641–648. DOI: 10.1016/j.tig.2013.08.002
  11. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. DOI: 10.1006/meth.2001
  12. Lutz, C. C., Rodriguezzas, S. L., Fahrbach, S. E., Robinson, G. E. (2012). Transcriptional response to foraging experience in the honey bee mushroom bodies. Developmental Neurobiology, 72(2), 153–166. DOI: 10.1002/dneu.20929
  13. Ma, W. H., Jiang, Y. S., Meng, J., Zhao, H. T., Song, H. L., Shen, J. S. (2018). Expression characterization and localization of the foraging gene in the Chinese Bee, Apis cerana cerana (Hymenoptera: Apidae). Journal of Insect Science, 18(2), 1–5. DOI: 10.1093/jisesa/iey034
  14. Meng, J., Ma, W., Zhao, H., Shao, Y., Tian, S., Yang, S., Jiang, Y.S. (2015). Cloning and tissue expression profiling of malvolio gene Acmvl in the Chinese honeybee, Apis cerana cerana (Hymenoptera: Apidae). Acta Entomologica Sinica, 58(7), 721–730. DOI: 10.16380/j.kcxb.2015.07.004
  15. Müller, U. (2002). Learning in honeybees: from molecules to behavior. Zoology, 105(4), 313–320. DOI: 10.1078/0944-2006-00075
  16. Nériec, N., & Desplan, C. (2016). From the eye to the brain: development of the drosophila visual system. Current Topics in Developmental Biology, 116, 247–271. DOI: 10.1016/bs.ctdb.2015.11.032
  17. Oldroyd, B. P., & Wongsiri, S. (2006). Asian Honey Bees: Biology, Conservation and Human Interactions. Harvard University Press, Cambridge, Mas.
  18. Orgad, S., Nelson, H., Segal, D., Nelson, N. (1998). Metal ions suppress the abnormal taste behavior of the drosophila mutant malvolio. Journal of Experimental Biology, 201(1), 115–120. DOI: 10.1016/0014-5793(95)01214-Y
  19. Page, R. E., Erber J., Fondrk M. K. (1998). The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 182(4), 489–500. DOI: 10.1007/s003590050196
  20. Page, R. E., Scheiner R., Erber J., Amdam G. V. (2006). The development and evolution of division of labor and foraging specialization in a social insect (Apis mellifera L.). Current Topics in Developmental Biology, 74, 253–286. DOI: 10.1016/S0070-2153(06)74008-X.
  21. Pankiw, T., & Jr, P. R. (2003). Effect of pheromones, hormones, and handling on sucrose response thresholds of honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 189(9), 675–684. DOI: 10.1007/s00359-003-0442-y
  22. Paul, R.K., Takeuchi, H., Matsuo, Y., Kubo, T. (2005). Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain. Insect Molecular Biology, 14(1), 9–15. DOI: 10.1111/j.1365-2583.2004.00524.x
  23. Robinson, G. E., Fahrbach, S. E., Winston, M. L. (1997). Insect societies and the molecular biology of social behavior. Bioessays, 19(12), 1099–1108. DOI: 10.1002/bies.950191209
  24. Robinson, G. E. (2002). Genomics and integrative analyses of division of labor in honeybee colonies. American Naturalist, 160(S6), S160–S172. DOI: 10.1086/342901
  25. Rodrigues, V., Cheah, P. Y., Ray, K., Chia, W. (1995). Malvolio, the drosophila homologue of mouse Nramp-1 (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behaviour. EMBO Journal, 14(13), 3007–3020. DOI: 10.1002/j.1460-2075.1995.tb07303.x
  26. Scheiner, R., Weiß, A., Malun, D., Erber, J. (2001). Learning in honey bees with brain lesions: How partial mushroom body ablations affect sucrose responsiveness and tactile learning. Animal Cognition, 3(4), 227–235. DOI: 10.1007/s100710100080
  27. Scheiner, R, Page, R.E., Erber, J. (2004). Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie, 35(2), 133–142. DOI: 10.1051/apido:2004001
  28. Seeley, T.D. (1982) Adaptive significance of the age polyethism schedule in honey bee colonies. Behavioral Ecology and Sociobiology, 11(4), 287–293. DOI: 10.1007/BF00299306
  29. Southon, A., Farlow, A., Norgate, M., Burke, R., Camakaris, J. (2008). Malvolio is a copper transporter in Drosophila melanogaster. Journal of Experimental Biology, 211(5), 709–716. DOI: 10.1242/jeb.014159
  30. Søvik, E., Perry, C. J., Lamora, A., Barron, A. B., Benshahar, Y. (2015). Negative impact of manganese on honeybee foraging. Biology Letters, 11(3), 20140989. DOI: 10.1098/rsbl.2014.0989
  31. Søvik, E., Lamora, A., Seehra, G., Barron, A. B., Duncan, J. G., Benshahar, Y. (2017). The drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions. Genes Brain and Behavior, 16(5), 506–514. DOI: 10.1111/gbb.12375
  32. Strausfeld, N. J. (2002). Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. The Journal of Comparative Neurology, 450(1), 4–33. DOI: 10.1002/cne.10285
  33. Takeuchi, H., Kage, E., Sawata, M., Kamikouchi, A., Ohashi, K., Ohara, M. … Kubo. T. (2001). Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain. Insect Molecular Biology, 10(5), 487–494. DOI: 10.1046/j.0962-1075.2001.00288.x
  34. Tobback, J., Mommaerts, V., Vandermissen, H. P., Smagghe, G., Huybrechts, R. (2011). Age- and task-dependent foraging gene expression in the bumblebee Bombus terrestris. Archives of Insect Biochemistry & Physiology, 76(1), 30–42. DOI: 10.1002/arch.20401
  35. Toth, A. L., & Robinson, G. E. (2007). Evo-devo and the evolution of social behavior. Trends in Genetics, 23(7), 334–341. DOI: 10.1016/j.tig.2007.05.001
  36. Toth, A. L., & Robinson, G. E. (2009). Evo-devo and the evolution of social behavior: brain gene expression analyses in social insects. Cold Spring Harbor Symposia on Quantitative Biology, 74(1), 419–426. DOI: 10.1101/sqb.2009.74.026
  37. Wang, Z. L., Liu, T. T., Huang, Z. Y., Wu, X. B., Yan, W. Y., Zeng, Z. J. (2012). Transcriptome Analysis of the Asian Honey Bee Apis cerana cerana. PLoS ONE, 7(10), e47954. DOI: 10.1371/journal.pone.0047954
  38. Weinstock, G., Robinson, G., & Gibbs, R. (2006). Insight into social insects from the genome of the honeybee Apis mellifera. Nature, 443(7114), 931–949. DOI: 10.1038/nature05260
  39. Winnington, A. P., Napper, R. M., & Mercer, A. R. (1996). Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee. The Journal of Comparative Neurology, 365(3), 479–490. DOI: 10.1002/(SICI)1096-9861(19960212)365:33.0.CO;2-M
  40. Zayed, A., & Robinson, G. E. (2012). Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annual Review of Genetics, 46(6), 591–615. DOI: 10.1146/annurev-genet-110711-155517.
  41. Zhao, H. T., Gao P. F., Du Y.L., Ma W. H., Tian, S. H., Jiang, Y. S. (2014). Molecular characterization and differential expression of two duplicated odorant receptor genes, AcerOr1 and AcerOr3, in Apis cerana cerana. Journal of Genetics, 93(1):53–61. DOI: 10.1007/s12041-014-0332-9
DOI: https://doi.org/10.2478/jas-2021-0004 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 61 - 70
Submitted on: Jun 7, 2019
Accepted on: Dec 31, 2020
Published on: Apr 26, 2021
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Weihua Ma, Jiao Meng, Xianyun Zhen, Huiting Zhao, Wanghong Li, Ye Gao, YuSuo Jiang, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution 4.0 License.